AiT Semiconductor Inc.

www.ait-ic.com

DESCRIPTION

The AL2G07 is dual buffer and driver is designed for 1.65V to 5.5V VCC operation.

The AL2G07 device is open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

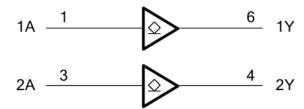
It operates over an ambient temperature range of -40°C to +125°C.

The AL2G07 is available in SOT-26 and SC70-6 Packages.

ORDERING INFORMATION

Package Type	Part Number		
SOT-26	ΓG	AL2G07E6R	
SPQ: 3,000pcs/Reel	E6	AL2G07E6VR	
SC70-6	6	AL2G07C6R	
SPQ:3,000pcs/Reel	C6	AL2G07C6VR	
Note	V: Halogen free Package R: Tape & Reel		
AiT provides all RoHS products			

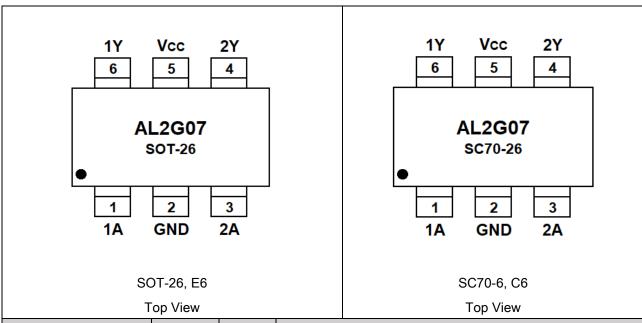
FEATURES


- Operating Voltage Range: 1.65V to 5.5V
- Dual Open-Drain Buffer Configuration
- Low Power Consumption:1µA (Max)
- Operating Temperature Range:
 - -40°C to +125°C
- Inputs and Open-Drain Outputs
- Accept Voltage to 5.5V
- High Output Drive: ±24mA at VCC=3.0V
- Extended Temperature: -40°C to +125°C

APPLICATION

- Blu-ray Players and Home Theaters
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Mobile Phones
- Personal Navigation Device (GPS)
- Portable Media Player

SIMPLIFIELD SCHEMATIC


3

REV1.0 - AUG 2025 RELEASED - -1

AL2G07

PIN DESCRIPTION

PII	PIN#		I/O	Function
SOT-26	SC70-6	Symbol	Ų	Function
1	1	1A	I	Input 1
2	2	GND	Р	Ground
3	3	2A	I	Input 2
4	4	2Y	0	Open-drain output 2
5	5	Vcc	Р	Power pin
6	6	1Y	0	Open-drain output 1

I=input, O=output, I/O=input and output, P=power

FUNCTION TABLE

INPUTS	ОИТРИТ
A	Y
L	L
Н	Z

H=High Voltage Level

L=Low Voltage Level

Z=High-impedance OFF-state

REV1.0 - AUG 2025 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

V _{CC} , Supply Voltage Range	-0.5V ~ + 6.5V	
V _I , Input Voltage Range (1)		-0.5V ~ + 6.5V
$V_{O}^{(1)}$, Voltage Range Applied to any Outp	-0.5V ~ + 6.5V	
Vo, Voltage range applied to any output i	n the high or low state (1) (2)	-0.5V ~ + V _{CC} +0.5V
Ік, Input Clamp Current	V _I <0	-50mA
I _{OK} , Output Clamp Current	V ₀ <0	-50mA
Io, Continuous Output Current	±50mA	
Io, Continuous Current through Vcc or GN	ND	±100mA
R _{eJA} , Junction-to-Ambient Thermal	SOT-26	273.8°C/W
Resistance	SC70-6	214.7°C/W
T _J , Junction Temperature ⁽⁴⁾		-65°C ~ +150°C
T _{STG} , Storage Temperature		-65°C ~ +150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.

REV1.0 - AUG 2025 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

T_A=+25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit	
Complex Valtage	M	Operating 1.6		-	5.50	V	
Supply Voltage	Vcc	Data retention only	1.50	-	5.50	V	
High Lavel Instit		V _{CC} = 1.65 V ~1.95 V	0.65xVcc	-	-		
High-Level Input	V	V _{CC} = 2.3V ~2.7 V	1.70	-	-	.,	
Voltage,	V_{IH}	V _{CC} = 3 V ~3.6 V	2.20	-	-	V	
Data Inputs (2)		V _{CC} = 4.5 V ~5.5 V	0.70xV _{CC}	-	-		
	VıL	V _{CC} = 1.65 V ~1.95 V	-	-	0.15xVcc		
Low-Level Input		V _{CC} = 2.3V ~2.7 V	-	-	0.30	V	
Voltage,		V _{CC} = 3 V ~3.6 V	-	-	0.40	V	
Data Inputs (2)		V _{CC} = 4.5 V ~5.5 V	-	-	0.15xVcc		
Input Voltage	Vı	-	0	-	5.50	V	
Output Voltage	Vo	-	0	-	5.50	V	
land tangetting		V _{CC} =1.8V± 0.15V,2.5V ± 0.2V	-	-	20		
Input transition rise or fall	tr, tf	Vcc=3.3V± 0.3V	-	-	10		
		V _{CC} =5V± 0.5V	-	-	5		
Operating Temperature	Та	-	-40	-	+125	°C	

⁽¹⁾ All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably VCCI or GND) to ensure proper device operation and minimize power.

REV1.0 - AUG 2025 RELEASED - - 4 -

⁽²⁾ For VCCI values not specified in the data sheet, VIH min = VCCI \times 0.7 V, VIL max = VCCI \times 0.3 V.

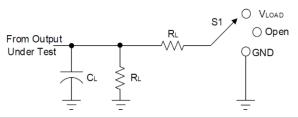
⁽³⁾ For VCCA values not specified in the data sheet, VIH min = VCCA \times 0.7 V, VIL max = VCCA \times 0.3 V.

AC CHARACTERISTICS

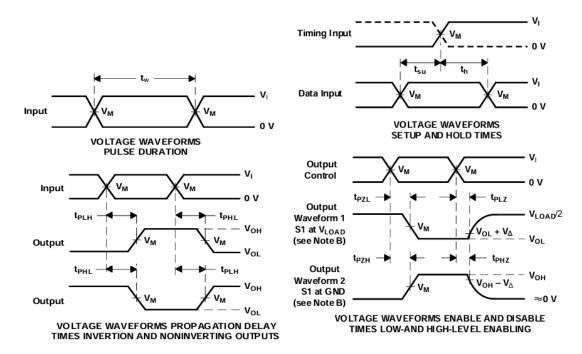
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit
	tpd	VCC=1.8V±0.15V CL=30pF, RL=1kΩ		-	6.40	-	ns
Propagation		VCC=2.5V±0.2V CL=30pF, RL=500 Ω	-40°C ~ +125°C	-	4.50	-	
Delay		VCC=3.3V±0.3V CL=50pF, RL=500 Ω		-	4.20	-	
		VCC=5V±0.5V CL=50pF, RL=500 Ω		-	3.70	-	
Input Capacitance	Ci	VCC=3.3V, VI=VCC or GND	+25°C	1	4	1	pF
		VCC=1.8V, f=10MHz		-c	-3	1	
Power Dissipation Capacitance	Cpd	V _{CC} = 2.5V, f=10MHz	+25°C	-	-3	-	
		V _{CC} = 3.3V, f=10MHz		-	-4	-	pF
		V _{CC} = 5V, f=10MHz		-	-6	-	

All unused inputs of the device must be held at VCC or GND to ensure proper device operation

DC CHARACTERISTICS


	Parameter	Conditions		Min	Тур.	Max	Unit
		I _{OH} = -100 μA, V _{CC} =1.65~5.5V		Vcc-0.1	-	-	
		I _{OH} = -4mA, V _{CC} =1.65V		1.20	-	-	
	V.	I _{OH} = -8mA, V _{CC} =2.3V	-40°C ~ +125°C	1.90	-	-	V
	Vон	I _{OH} = -16mA, V _{CC} =3V	-40 C ~ +125 C	2.30	-	-	V
		$I_{OH} = -24$ mA, $V_{CC} = 3$ V		2.40	-	-	
		I _{OH} = -32mA, V _{CC} =4.5V		3.80	-	-	
		$I_{OH} = 100 \mu A, V_{CC} = 1.65 \sim 5.5 V$		-	-	0.10	
		$I_{OH} = 4mA, V_{CC} = 1.65V$		-	-	0.45	V
	Va	I _{OH} = 8mA, V _{CC} =2.3V	-40°C ~ +125°C	-	-	0.30	
	Vol	I _{OH} = 16mA, V _{CC} =3V	-40 C ~ +125 C	-	-	0.40	
		I _{OH} = 24mA, V _{CC} =3V		-	-	0.55	
		I _{OH} = 32mA, V _{CC} =4.5V		-	-	0.55	
h	A or P inpute	$V_I = 5.5V$ or GND,	+25°C	-	±0.1	±1	
II	A or B inputs	Vcc=1.65V~5.5V	-40°C ~ +125°C	-	-	±5	μA
	1	\(\ \ar\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+25°C	-	±0.1	±1	
	l _{off}	VI or VO= 0 to 5.5V, Vcc=0V	-40°C ~ +125°C	-	-	±10	μA
1		VI=5.5V or GND, IO=0	+25°C	-	0.10	1	
	lcc	Vcc=1.65V~5.5V	-40°C ~ +125°C	-	-	10	μA
	Δlcc	One input at VCC-0.6V, Other inputs at VCC or GND Vcc=3V~5.5V	-40°C ~ +125°C	- 1	-	500	μΑ

REV1.0 - AUG 2025 RELEASED - - 5 -

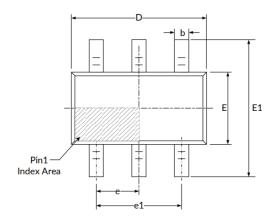

www.ait-ic.com

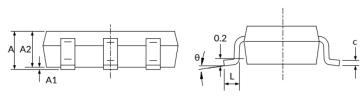
PARAMETER MEASUREMENT INFORMATION

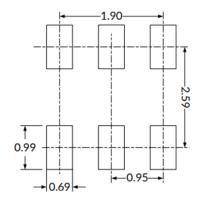
TEST	S1
t _{PLH} /t _{PHL}	V_{LOAD}
tpiz/tpzL	V_{LOAD}
t _{PHZ} /t _{PZH}	V_{LOAD}

.,,,,	INPL	JTS							.,,
VCC	VI	tr/tf	VM	VLOAD	С	L	-	₹∟	VΔ
1.8V±0.15V	VCC	≤2ns	VCC/2	2 x V _{CC}	15pF	30pF	1ΜΩ	1kΩ	0.15V
2.5V±0.2V	VCC	≤2ns	VCC/2	2 x V _{CC}	15pF	30pF	1ΜΩ	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	15pF	50pF	1ΜΩ	500Ω	0.3V
5V±0.5V	VCC	≤2.5ns	VCC/2	2 x Vcc	15pF	50pF	1ΜΩ	500Ω	0.3V

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω .
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$
- (F) $t_{\text{\tiny LPZ}}$ and $t_{\text{\tiny PZH}}$ are the same as $t_{\text{\tiny en}}.$
- (G) t_{PLH} and t_{PHL} are the same as t_{pd}
- (H) All parameters and waveforms are not applicable to all devices.


REV1.0 - AUG 2025 RELEASED - - 6 -


AiT Semiconductor Inc.

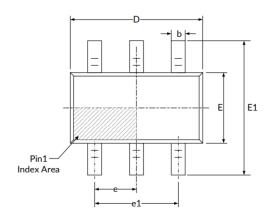

www.ait-ic.com

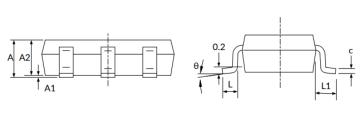
PACKAGE INFORMATION

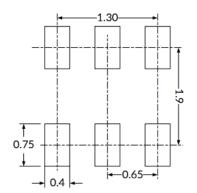
Dimension in SOT-26 (Unit: mm)

Recommended Land Pattern (Unit: mm)

Sumb al	Millim	neters	
Symbol	Min	Max	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820 3.020		
е	0.950	BSC	
e1	1.800	2.000	
Е	1.500	1.700	
E1	2.650	2.950	
L	0.300	0.600	
θ	0°	8 °	


REV1.0 - AUG 2025 RELEASED - - 7




AiT Semiconductor Inc.

www.ait-ic.com

Dimension in SC70-6(Unit: mm)

Recommended Land Pattern (Unit: mm)

Cymah al	Millim	eters	
Symbol	Min	Max	
Α	0.900	1.100	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.350	
С	0.080	0.150	
D	2.000	2.200	
Е	1.150	1.350	
E1	2.150	2.450	
е	0.650	BSC	
e1	1.300 BSC		
L	0.260	0.460	
Н	0.525 TYP		
θ	0° 8°		

REV1.0 - AUG 2025 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - AUG 2025 RELEASED - - 9 -