DESCRIPTION

The AM04NN10 is available in SOP8 Package.

BVDSS	RDSON	ID
100V	95mΩ	3.5A

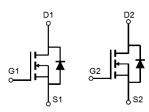
APPLICATION

- DC/DC Converter
- LED Backlighting
- Motor Control

ORDERING INFORMATION

Package Type	Part Number		
SOP8	M8	AM04NN10M8VR	
SPQ: 4,000pcs/Reel	IVIO	AIVIU4ININ TUIVIOVR	
Note	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all R	AiT provides all RoHS products		

FEATURES


• 100V, 3.5A

$$R_{DS(ON)}$$
 Typ = $95m\Omega$ @ V_{GS} = $10V$
 $R_{DS(ON)}$ Typ = $135m\Omega$ @ V_{GS} = $4.5V$

- Advanced Trench MOS with Split-Gate Structure
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead Free

PIN DESCRIPTION

Pin#	Symbol	Function
1,3	S	Source
2,4	G	Gate
5,6,7,8	D	Drain

ABSOLUTE MAXIMUM RATINGS

T_J=25°C, unless otherwise specified

1)-25 C, unless otherwise specified.			
V _{DS} , Drain-to-Source Voltage		100V	
V _{GS} , Gate-to-Source Voltage		±20V	
I _D , Continuous Drain Current	T _A = 25°C	3.5A	
ID, Continuous Drain Current	T _A = 100°C	2.2A	
I _{DM} , Pulsed Drain Current (1)		14A	
E _{AS} , Single Pulsed Avalanche Energy (2)		7.2mJ	
P _D , Power Dissipation	T _A = 25°C	3.1W	
R _{BJA} , Thermal Resistance, Junction to Ambient (3)		40.3°C/W	
T _J , T _{STG} , Junction & Storage Temperature Range		-55°C ~ +150°C	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Repetitive rating, pulse width limited by junction temperature T_J(MAX)=150°C.
- (2) The EAS data shows Max. rating. The test condition is $T_J=25^{\circ}C$, $V_{DD}=25V$, $V_{G}=10V$, $R_{G}=25\Omega$, L=0.4mH, $I_{AS}=6$ A
- (3) R_{0JA} is measured with the device mounted on 1inch² pad of 2oz copper FR4 PCB.

REV1.0 - APR 2025 RELEASED - -1

ELECTRICAL CHARACTERISTICS

T_J=25°C, unless otherwise specified.

Parameter	Symbo	Conditions	Min	Тур.	Max	Unit
	1					
Off Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	Igss	V _{GS} =±20V, V _{DS} = 0V	-	-	±100	nA
On Characteristics						
Gate Threshold Voltage	V _{GS (th)}	V _{DS} =V _{GS} , I _D =250μA	1	1.65	2.5	V
Static Drain Source ON-	Б	V _{GS} =10V, I _D =3A	-	95	130	mΩ
Resistance (4)	R _{DS(ON)}	V _{GS} =4.5V, I _D =1A	-	135	190	mΩ
Dynamic Characteristics						
Input Capacitance	Ciss	50/// 0)/	-	200	-	
Output Capacitance	Coss	V _{DS} =50V, V _{GS} =0V, f=1MHz	-	300	-	pF
Reverse Transfer Capacitance	Crss		_	3	-	
Total Gate Charge	Qg	V _{GS} =0 to 10V,	-	4	-	
Gate Source Charge	Qgs		_	0.9	-	nC
Gate-Drain ("Miller") Charge	Q_{gd}	V _{DS} =50V, I _D =3A	-	1.1	-	
Switching Characteristics						
Turn-On Delay Time	t _{d(on)}		-	13	_	
Turn-On Rese Time	t r	V _{GS} =10V, V _{DD} =50V	_	19	-	
Turn-Off Delay Time	t _{d(off)}	R_{GEN} =3 Ω , I_D =3 A	_	20	-	ns
Turn-Off Fall Time	t _f		-	28	-	
Drain-Source Diode Characteristics and Max Ratings						
Maximum Continuous Drain to					2.5	_
Source Diode Forward Current	Is	-	_		3.5	A
Maximum Pulsed Drain to Source	lov				14	٨
Diode Forward Current	Ism	-	-	_	14	Α
Drain to Source Diode Forward	V _{SD}	V _{GS} =0V, I _S =3A	_	_	1.2	V
Voltage	A 2D	v G5-0 v , 15-0/1			1.2	v

⁽⁴⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 0.5%.

REV1.0 - APR 2025 RELEASED - - 2 -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Output Characteristics

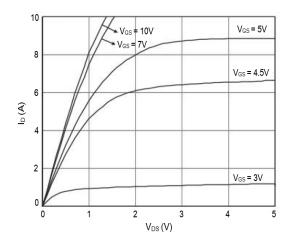


Fig 3. On-resistance vs. Drain Current

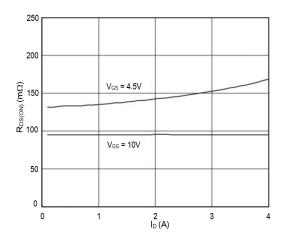


Fig 5. Gate Charge Characteristics

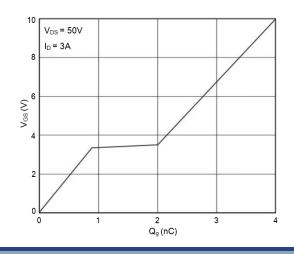


Fig 2. Typical Transfer Characteristics

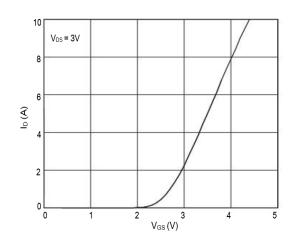


Fig 4. Body Diode Characteristics

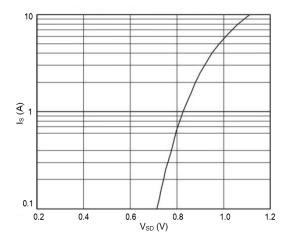
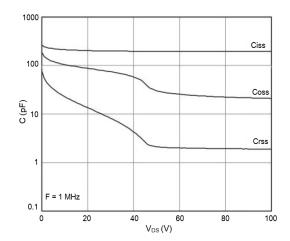
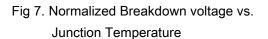




Fig 6. Capacitance Characteristics

REV1.0 - APR 2025 RELEASED - - 3 -

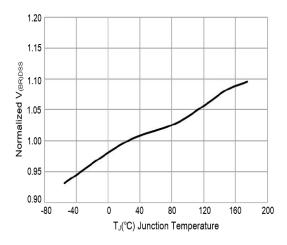


Fig 9. Maximum Safe Operating Area

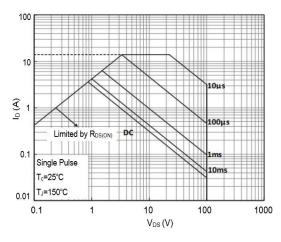


Fig 11. Normalized Maximum Transient
Thermal Impedance

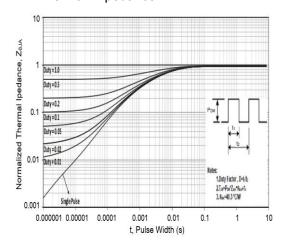


Fig 8. Normalized on Resistance vs. Junction Temperature

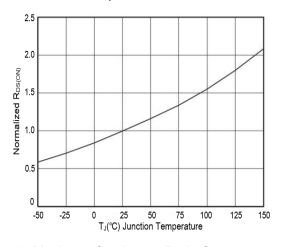
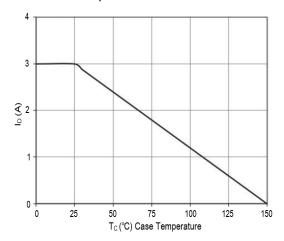
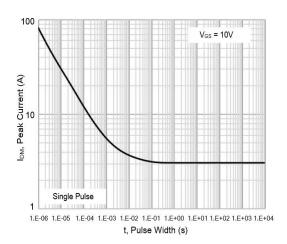
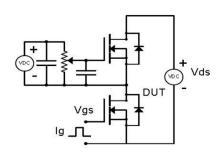


Fig 10. Maximum Continuous Drain Current vs.
Case Temperature


Fig 12. Peak Current Capacity

REV1.0 - APR 2025 RELEASED - - 4 -

TEST CIRCUIT

Fig 1. Gate Charge Test Circuit & Waveform

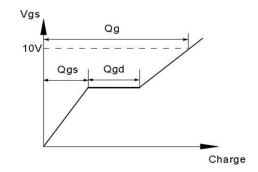
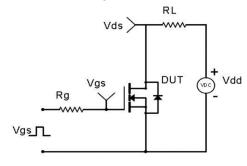



Fig 2. Resistive Switching Test Circuit & Waveforms

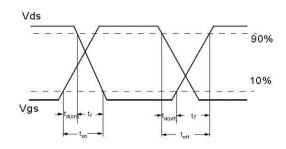
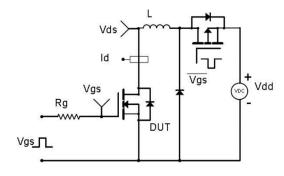
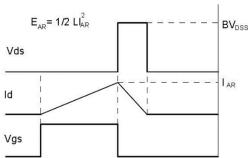
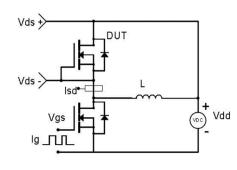
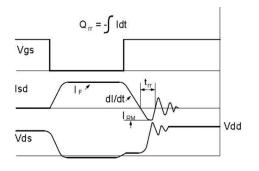
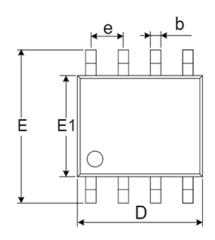
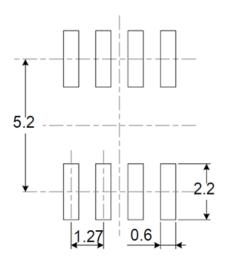
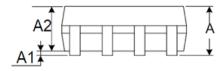



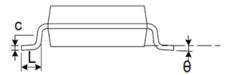
Fig 3. Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Fig 4. Diode Recovery Test Circuit & Waveforms




PACKAGE INFORMATION


Dimension in SOP8 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Complete I	MILLIMETER			
Symbol	Min.	Max.		
Α	1.350	1.750		
A1	0.100	0.250		
A2	1.350	1.550		
b	0.330	0.510		
С	0.170	0.250		
D	4.800	5.000		
е	1.270 BSC			
E	5.800	6.200		
E1	3.800	4.000		
L	0.400	1.270		
θ	0°	8°		

REV1.0 - APR 2025 RELEASED - - 6 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - APR 2025 RELEASED - - 7 -