AiT Semiconductor Inc.

-40V, -45A P-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

The AM45P04D is available in TO-252 Package.

www.ait-ic.com

VDSS	RDSON	ID
-40V	8.9 mΩ	-45A

APPLICATIONS

- Load Switch
- **PWM Application**
- **Power Management**

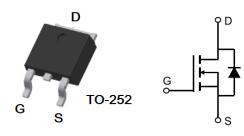
ORDERING INFORMATION

Package Type	Part Number		
TO-252	D	AM45P04DVR	
SPQ: 2,500pcs/Reel	D	AIVI43P04DVR	
Note	R: Tape & Reel		
nole	V: Halogen free Package		
AiT provides all RoHS products			

ABSOLUTE MAXIMUM RATINGS

T_J = 25°C, unless otherwise specified.		
V _{DS} , Drain-to-Source Voltage		-40V
V _{GS} , Gate-to-Source Voltage		±20V
I _D , Continuous Drain Current	T _C = 25°C	-45A
	T _C = 100°C	-27A
I _{DM} , Pulsed Drain Current ⁽¹⁾		-180A
E _{AS} , Single Pulse Avalanche Energy ⁽²⁾		100mJ
P _D , Power Dissipation	T _c = 25°C	40W
Rejc, Thermal Resistance, Junction to	3.1°C/W	
T _{STG} , Storage Temperature Range		-55℃ ~ +150℃
T _J , Junction Temperature Range		-55°C ~ +150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


(1) Repetitive Rating: pulse width limited by maximum junction temperature.

(2) E_{AS} condition: Starting TJ=25°C, VDD=20V, VG=10V, RG=250hm, L=0.5mH, IAS=17A

FEATURE

- -40V, -45A
- $R_{DS(ON)}$ Typ. = 8.9m Ω @ V_{GS} = -10V
- R_{DS(ON)} Typ. =12.8mΩ @ V_{GS} = -4.5V
- Advanced Trench Technology
- Excellent RDS(ON) and Low Gate Charge

PIN DESCRIPTION

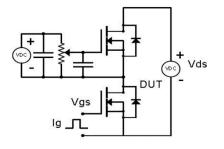
TO-252

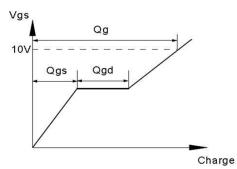
Pin #	Symbol	Function
1	G	Gate
2,4	D	Drain
3	S	Source

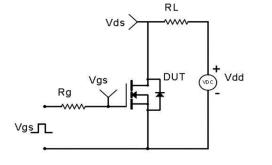
MOSFET -40V, -45A P-CHANNEL ENHANCEMENT MODE POWER MOSFET

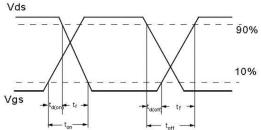
ELECTRICAL CHARACTERISTICS

T_J = 25°C, unless otherwise specified.


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	V(BR)DSS	V _{GS} = 0V, I _D = -250µA	-40	-	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = -40V, V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	lgss	V_{GS} = ±20V, V_{DS} =0V	-	-	±100	nA
On Characteristics			-			•
Gate Threshold Voltage	V _{GS(TH)}	V_{DS} = V_{GS} , I_D = -250 μ A	-1.1	-1.5	-2.2	V
		V_{GS} = -10V, I_D = -15A	-	8.9	11.6	mΩ
Static Drain-Source ON-Resistance *	R _{DS(ON)}	V _{GS} = -4.5V, I _D = -10A	-	12.8	16.6	
Dynamic Characteristics	1			I		
Input Capacitance	Ciss		-	1997	-	pF
Output Capacitance	Coss	V _{DS} = -20V, V _{GS} =0V, f=1.0MHZ	-	258	-	
Reverse Transfer Capacitance	Crss		-	205	-	
Total Gate Charge	Qg	- V _{DS} = -20V , I _D =-11V - V _{GS} =0V ~ -10V	-	35	-	nC
Gate-Source Charge	Q _{gs}		-	6.2	-	
Gate-Drain Charge	Q _{gd}		-	7.3	-	
Switching Characteristics	1	1		1		
Turn-On Delay Time	t _{d(on)}		-	10	-	ns
Turn-On Rise Time	tr	V_{DD} = -20V, I_D = -11A	-	20	-	
Turn-Off Delay Time	t _{d(off)}	$R_{GEN}=2.5\Omega$,	-	51	-	
Turn-Off Fall Time	t _f	- V _{GS} = -10V,	-	28	-	
Reverse Diode	1			L		
Maximum Continuous Drain to		ls -	-	-	-45	А
Source Diode Forward Current	Is					
Maximum Pulsed Drain to Source					100	_
Diode Forward Current	I _{SM}	-	-	-	-180	A
Drain to Source Diode Forward		V _{SD} I _S = -11A, V _{GS} =0V	-	-	1.2	V
Voltage	VSD					
Body Diode Reverse Recovery Time	trr		-	35	-	ns
Body Diode Reverse Recovery		$I_{\rm F} = -11A$		40		
Charge	Q _{rr} di/dt = 100A/us		-	40	-	nC


* Pulse test: Pulse width \leq 300µs, Duty Cycle \leq 2%.


TEST CIRCUIT


Fig 1. Gate Charge Test Circuit & Waveform

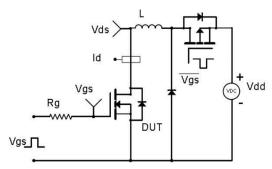


Fig 2. Resistive Switching Test Circuit & Waveforms

Fig 3. Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

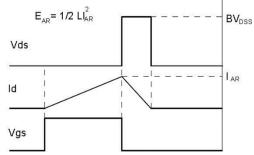
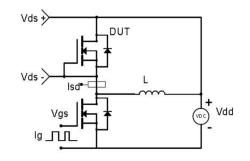
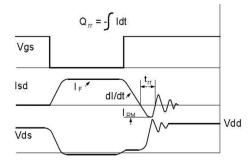
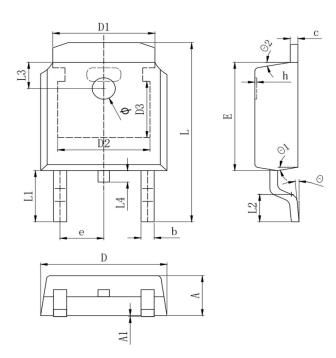




Fig 4. Diode Recovery Test Circuit & Waveforms



PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Or much all	Millimeters			
Symbol	Min.	Max.		
A	2.200	2.400		
A1	0.000	0.127		
b	0.640	0.740		
С	0.460	0.580		
D	6.500	6.700		
D1	5.334 REF.			
D2	4.826 REF.			
D3	3.166 REF.			
E	6.000	6.200		
е	2.286 REF.			
h	0.000	0.200		
L	9.900	10.300		
L1	2.888 REF.			
L2	1.400	1.700		
L3	1.600 REF.			
L4	0.600	1.000		
Φ	1.100	1.300		
θ	0°	8°		
θ1	9° TYP.			
θ2	9° TYP.			

IMPORTANT NOTICE

www.ait-ic.com

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.