

DESCRIPTION

The AL1G32 single 2-input Positive-OR gate, designed for 1.65V to 5.5V Vcc operation.

The AL1G32 performs the Boolean function Y=A+ B or $Y = \overline{\overline{A} \times \overline{B}}$ in positive logic. The AL1G32 is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

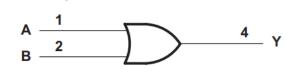
AL1G32 operates over an ambient temperature range of -40°C to +125°C.

The AL1G32 is available in SOT-25 and SC70-5 packages.

ORDERING INFORMATION

Package Type	Part Number		
SOT-25	E5	AL1G32E5R	
SPQ: 3,000pcs/Reel	⊑ 3	AL1G32E5VR	
SC70-5	C5	AL1G32C5R	
SPQ:3,000pcs/Reel	Co	AL1G32C5VR	
Note	V: Halogen free Package R: Tape & Reel		
AiT provides all RoHS products			

Y=A+B H=High Voltage Level L=Low Voltage Level

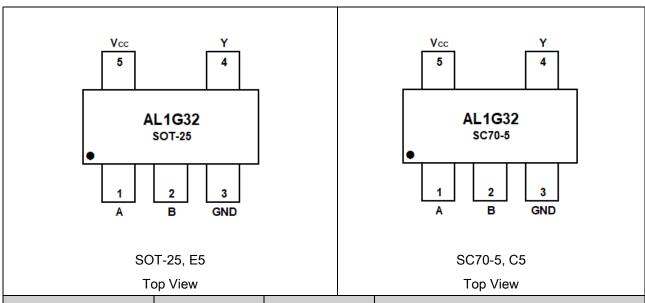

FEATURES

- Operating Range: 1.65V to 5.5V
- Low Power Consumption: 1μA (Max).
- Operating Temperature Range: -40°C to +125°C
- Input Accept Voltage to 5.5V
- High Output Drive: ±24mA at Vcc=3.0V

APPLICATION

- AV Receiver
- Portable Audio Docks
- Blu-ray Player and Home Theater
- MP3 Players and Recorders
- Personal Digital Assistants (PDAs)
- Power:
 - -Telecom and Server ACDC Supply
 - -Single Controllers
 - . Analog
 - . Digital
- Client and Enterprise Solid State Drives (SSDs)
- LCD and Digital TVs and High Definition TVs (HDTVs)
- Enterprises Tablets
- Video Analytics Servers
- Wireless Headsets, Keyboards and Mice

SIMPLIFIED SCHEMATIC



FUNCTION TABLE

Inp	Output	
Α	В	Υ
Н	Н	Н
L	Н	Н
Н	L	Н
L	L	L

REV1.0 - OCT 2024 RELEASED - -1

PIN DESCRIPTION

PI	N#	Symbol	1/0	Function
SOT-25	SC70-5	Symbol	I/O	Function
1	1	Α	I	Input
2	2	В	I	Input
3	3	GND	Р	Ground
4	4	Y	0	Output
5	5	Vcc	Р	Power Pin

I=Input, O=Output, P=Power

REV1.0 - OCT 2024 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

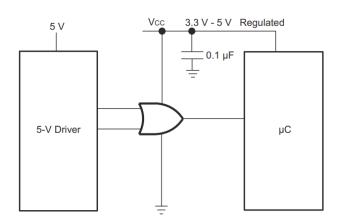
over operating free-all temperature range (unless otherwise noted)				
V _{CC} , Supply Voltage Range		-0.5V ~ + 6.5V		
V _I , Input Voltage Range (1)		-0.5V ~ + 6.5V		
Vo, Voltage Range Applied to any Output in the High or L	ow State (1)	-0.5V~V _{CC} +0.5V		
Vo, Voltage Range Applied to any Output in the High-Imp	edance or Power-Off	-0.5V ~ + 6.5V		
I _{IK} , Input Clamp Current	V _I <0	-50mA		
Іок, Output Clamp Current	Vo<0	-50mA		
Io, Continuous Output Current		±50mA		
Io, Continuous Current through Vcc or GND		±100mA		
D. Jungstiem to Ambient Theory of Decistors	SOT-25	273.8°C/W		
R _{0JA} , Junction-to-Ambient Thermal Resistance	214.7°C/W			
T _J , Junction Temperature ⁽⁴⁾		-65°C ~ +150°C		
T _{STG} , Storage Temperature	-65°C ~ +150°C			

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.

ESD RATINGS

Parameter	Symbol	Min	Unit
Human-Body Model (HBM)	V Floatwootatia Diaghawa	±8000	V
Machine Model (MM)	V _(ESD) Electrostatic Discharge	±500	V


REV1.0 - OCT 2024 RELEASED - - 3 -

RECOMMENDED OPERATING CONDITIONS

T_A=+25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Max	Unit	
Complet Valtage		Operating	1.65	5.5		
Supply Voltage	Vcc	Data Retention only	1.5	5.5		
		V _{CC} = 1.65V ~ 1.95V	0.65xVcc	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Lligh Lovelland Veltone	V	V _{CC} = 2.3V ~ 2.7V	1.7	-	V	
High-Level Input Voltage	V _{IH}	V _{CC} = 3V ~ 3.6V	2.2	-		
		V _{CC} = 4.5V ~ 5.5V	0.7xV _{CC}	-		
	VIL	V _{CC} = 1.65V ~ 1.95V	-	0.15x Vcc		
Lavelaval baset Valtage		V _{CC} = 2.3V ~ 2.7V	-	0.3	V	
Low-Level Input Voltage		V _{CC} = 3V ~ 3.6V	-	0.4		
		V _{CC} = 4.5V ~ 5.5V	-	0.15xVcc		
Input Voltage	Vı	-	0	5.5	V	
Output Voltage	Vo	-	0	Vcc	V	
		$V_{CC} = 1.8 V \pm 0.15 V$,		20		
Input Transition Rise or Fall		2.5 V ± 0.2 V	-	20	A /	
	tr, tf	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	-	10	ns/V	
		V _{CC} = 5 V ± 0.5V	-	5		
Operating Temperature	TA	-	-40	+125	°C	

TYPICAL APPLICATION

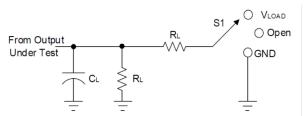
REV1.0 - OCT 2024 RELEASED - - 4 -

ELECTRICAL CHARACTERISTIC

DC CHARACTERISTICS

	Symbol	Condition	s	Min	Тур.	Max	Unit
		I _{OH} = -100 μA, V _{CC} = 1.65V ~ 5.5V		V _{CC} ~ 0.1	-	-	
		I _{OH} = -4mA, V _{CC} = 1.65V		12	-	-	
	V_{OH}	$I_{OH} = -8mA, V_{CC} = 2.3V$	-40°C ~ +125°C	1.9	-	-	V
		$I_{OH} = -16mA$, $V_{CC} = 3V$		2.4	-	-	
		$I_{OH} = -24 \text{mA}, V_{CC} = 3 \text{V}$		2.3	-	-	
		$I_{OH} = -32 \text{mA}, V_{CC} = 4.5 \text{V}$		3.8	-	-	
		$I_{OH} = 100 \mu A,$ $V_{CC} = 1.65 V \sim 5.5 V$		-	-	0.1	
	V _{OL}	I _{OH} = 4mA, V _{CC} = 1.65V		-	-	0.45	V
		I _{OH} = 8mA, V _{CC} = 2.3V	-40°C ~ +125°C	-	-	0.3	
		I _{OH} = 16mA, V _{CC} = 3V		-	-	0.4	
		I _{OH} = 24mA, V _{CC} = 3V		-	-	0.55	
		$I_{OH} = 32 \text{mA}, V_{CC} = 4.5 \text{V}$		-	-	0.55	
l ₁	A or B Inputs	$V_I = 5.5V$ or GND,	+25℃		±0.1	±1	
- 11	A or B Inputs	V _{CC} = 0V ~ 5.5V	-40°C ~ +125°C		-	±5	μA
	$I_{ m off}$	V_1 or $V_0 = 5.5V$, $V_{CC} = 0$	+25℃	-	±0.1	±1	
	ΙΟΠ	V(0) V(0 = 3.3V, V(0 = 0	-40°C ~ +125°C	-	-	±10	μA
	Icc	$V_1 = 5.5V$ or GND, $I_0 = 0$,	+25℃	-	0.1	1	
	ICC	V _{CC} = 1.65V ~ 5.5V	-40°C ~ +125°C	-	-	10	μA
	ΔΙσο	One input at Vcc-0.6V, Other inputs at Vcc or GND, Vcc = 3V ~ 5.5V	-40°C ~ +125°C	-	-	500	μΑ

AC CHARACTERISTICS


-40°C \sim +125°C, unless otherwise noted.

Parameter	Symbol	(Conditions	Тур.	Unit	
Input Capacitance	Ci	V _{CC} = 3.3V	$V_I = V_{CC}$ or GND	4	ns	
		$V_{CC} = 1.8V \pm 0.15V$	$C_L = 30pF, R_L = 1K\Omega$	8	3.7 2.5	
Danie and the Delay	4	V _{CC} = 2.5V±0.2V	$C_L = 30 pF, R_L = 500 \Omega$	3.7		
Propagation Delay	t pd	$V_{CC} = 3.3V \pm 0.3V$	$C_L = 50 pF, R_L = 500 \Omega$	2.5		
		$V_{CC} = 5V \pm 0.5V$	$C_L = 50 pF, R_L = 500 \Omega$	2.7		
		V _{CC} = 1.8V		20		
Power Dissipation	$C_{\sf pd}$	V _{CC} = 2.5V	f_40MI +05°0	21	pF	
Capacitance		V _{CC} = 3.3V	f=10MHz, +25°C	22		
		V _{CC} = 5V		25		

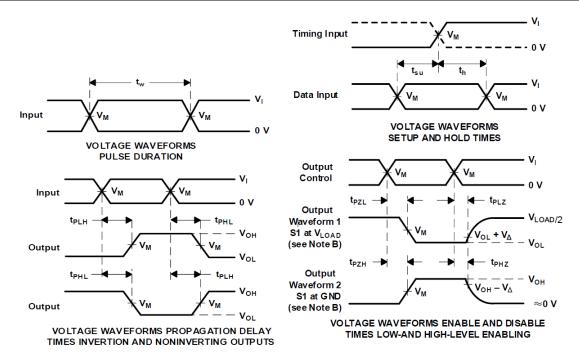
All unused inputs of the device must be held at Vcc or GND to ensure proper device operation

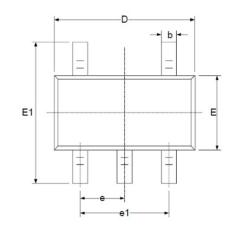
REV1.0 - OCT 2024 RELEASED - - 5 -

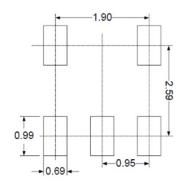
PARAMETER MEASUREMENT INFORMATION

TEST	S1
tplн/tpнl	Open
t _{PIZ} /t _{PZL}	V_{LOAD}
tpHz/tpzH	GND

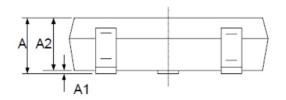
V	In	puts	\/NA	V			_		\/A
Vcc	VI	tr/tf	VM	V _{LOAD}		L	Ľ	R L	VΔ
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	30pF	1ΜΩ	1kΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	30pF	1ΜΩ	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	15pF	50pF	1ΜΩ	500Ω	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	15pF	50pF	1ΜΩ	500Ω	0.3V

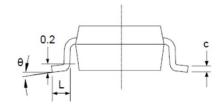



Fig 1. Load Circuit and Voltage Waveforms

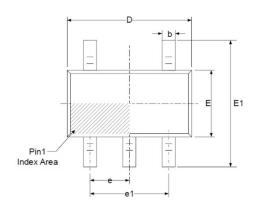

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω .
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) All parameters and waveforms are not applicable to all devices.

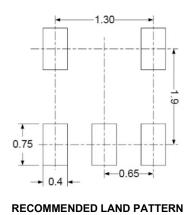
REV1.0 - OCT 2024 RELEASED - - 6 -

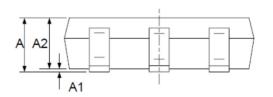

PACKAGE INFORMATION

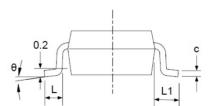

Dimension in SOT-25 (Unit: mm)

RECOMMENDED LAND PATTERN






Sumb al	Millim	neters
Symbol	Min	Max
Α	1.050	1.250
A1	0.000	0.100
A2	1.050	1.150
b	0.300	0.500
С	0.100	0.200
D	2.820	3.020
E	1.500	1.700
E1	2.650	2.950
е	0.950	BSC.
e1	1.800	2.000
L	0.300	0.600
θ	0°	8 °


REV1.0 - OCT 2024 RELEASED - - 7

Dimension in SC70-5 (Unit: mm)

Comple at	Millim	neters	
Symbol	Min	Max	
Α	0.900	1.100	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.350	
С	0.080	0.150	
D	2.000	2.200	
E	1.150	1.350	
E1	2.150	2.450	
е	0.6950	BSC.	
e1	1.300	BSC.	
L	0.260	0.460	
L1	0.525		
θ	0°	8°	

REV1.0 - OCT 2024 RELEASED - -8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - OCT 2024 RELEASED - - 9 -