

AiT Semiconductor Inc.

DESCRIPTION

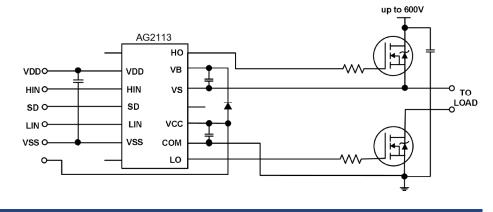
The AG2113 is a high-side and low-side gate driver with a source and sink current capability of 2.5A, making it suitable for driving power MOSFETs or IGBTs. Its logic inputs are compatible with standard CMOS or TTL outputs, functioning with logic levels as low as 3.3V. The output drivers include a high pulse current buffer stage designed to minimize cross-conduction between drivers. This device supports a wide bias supply input range from 10V to 20V. Additionally, the floating channel can drive an N-Channel power MOSFET or IGBT in a high-side configuration, operating at voltages up to 600V.

www.ait-ic.com

AG2113 is available in SOP16 and DIP14 packages.

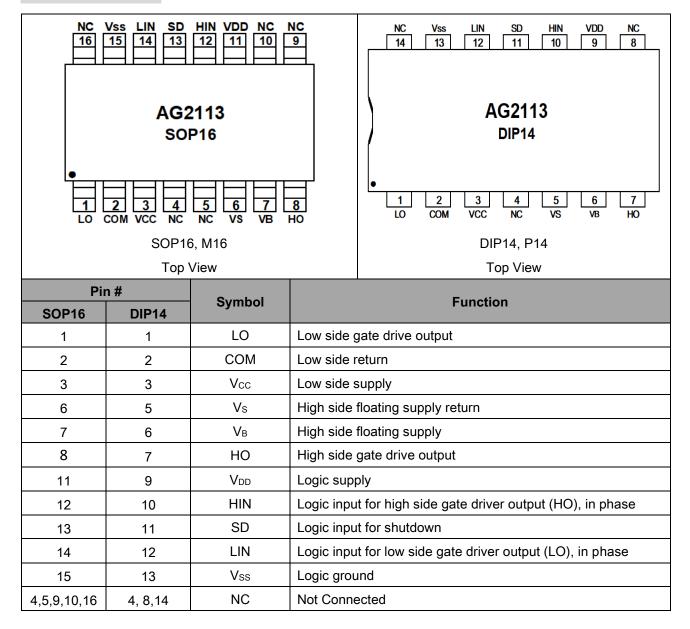
ORDERING INFORMATION

Package Type	Part Number		
SOP16	M16 AG2113M16VR		
SPQ: 3,000pcs/Reel	IVITO	AGZTISIVITOVR	
DIP14	P14	AG2113P14VU	
SPQ: 25pcs/Tube	Г 14	AG2113F14V0	
	V: Halogen free Package		
Note	R: Tape & Reel		
	U: Tube		
AiT provides all RoHS products			


FEATURES

- Fully Operational up to 600 V
- Drives two N-channel MOSFETs or IGBTs in • high-side / low-side configuration
- Floating channel designed for bootstrap operation.
- Output source/sink current capability 2.5A
- Gate drive supply ranges from 10V to 20V •
- Under-voltage lockout for both channels •
- 3.3V logic compatible with CMOS and TTL, CMOS Schmitt-triggered inputs with pull-down; Logic and power ground ±5V offset
- Separate logic supply ranges from 3.3V to 20V •
- 18 ns(typ) rise / 13 ns (typ) fall times with 1000 pF load.
- 128 ns (typ) turn-on / 124 ns (typ) turn-off delay times.

APPLICATION


- Motor Drivers, UPS.
- High-Density Switching Power Supplies for Industrial Infrastructure.
- Full/Half Bridge Converters.
- Two Switch Forward Converter.

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

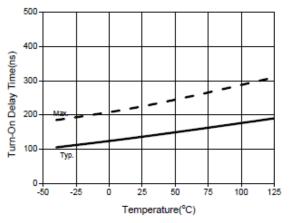
Parameter	Symbol	Min.	Max.	Units
High side floating supply voltage	VB	-0.3	620	
High side floating supply offset voltage	Vs	V _B - 20	V _B + 0.3	
High side floating output voltage	Vно	Vs - 0.3	V _B + 0.3	
Low side fixed supply voltage	Vcc	-0.3	20	
Low side output voltage	V _{LO}	-0.3	V _{CC} + 0.3	
Logic supply voltage	V _{DD}	-0.3	V _{CC} + 20]
Logic supply offset voltage	Vss	Vcc -20	V _{CC} + 0.3]
Logic input voltage (HIN, LIN, SD)	Vin	Vss-0.3	V _{DD} + 0.3]
Allowable offset supply voltage transient	dVs/dt	-	50	V/ns
Package Thermal Resistance (DIP14)		-	75	°C 111
Package Thermal Resistance (SOP16)	-	-	100	°C /W
Junction Temperature	TJ		150	
Storage Temperature	Ts	-55	150	°C
Lead Temperature (Soldering, 10 seconds)	TL		300]

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

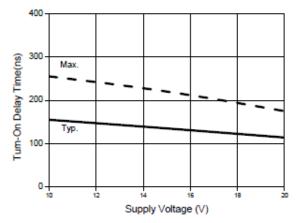
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units
High side floating supply voltage	VB	V _S + 10	Vs + 20	
Low side fixed supply voltage	Vcc	10	20	
Logic supply voltage	Vdd	V _{SS} + 3	V _{SS} + 20	V
Logic supply offset voltage	Vss	-5	5	
Logic input voltage (HIN, LIN, SD)	VIN	Vss	V _{DD}	
Operation temperature	TA	-40	125	°C

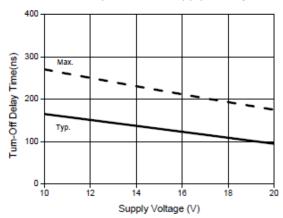
ELECTRICAL CHARACTERISTICS

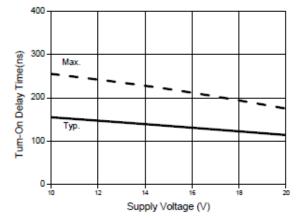

VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C, CL = 1000pF and VSS = COM, unless otherwise specified.

$\frac{V_{\text{BIAS}}(V_{\text{CC}}, V_{\text{BS}}, V_{\text{DD}}) = 15V, T_{\text{A}} = 25 \text{ C}, C_{\text{L}} = \mathbf{Parameter}$	Symbol	Conditions	Min	Тур.	Max	Units
INPUT						
Input signal high threshold	VIH	-	2.5	-	-	N
Input signal low threshold	VIL	-	-	-	0.8	0.8 V
Logic "1" input bias current	l _{IN} +	V _{IN} = 5V	-	10	20	
Logic "0" input bias current	I _{IN} -	V _{IN} = 0V	-	-	2.0	μA
OUTPUT						
High Level Output Voltage, V $_{\text{BIAS}}$ - V $_{\text{O}}$	Vон		-	-	1.4	V
Low Level Output Voltage	Vol	l _o = 20 mA	-	-	0.15	V
Output High Short Circuit Pulsed Current	lo+	V _O =0V, V _{IN} =VDD, PW ≤ 10 µS	2.0	2.5	-	
Output Low Short Circuit Pulsed Current	lo-	Vo = 15V, V _{IN} = 0, PW ≤ 10 µS	2.0	2.5	-	A
POWER SUPPLY						
Quiescent V _{BS} Supply Current	IQBS		-	45	100	μΑ
Quiescent Vcc Supply Current	lqcc	$V_{IN} = 0 \text{ or } V_{DD}$	-	500	700	
Quiescent VDD Supply Current	IQDD		-	-	150	
Offset Supply Leakage Current	Ilk	$V_{\rm B} = V_{\rm S} = 600 V$	-	-	50	
V_{CC} and V_{BS} Supply under voltage	V _{BSUV} +		7.5	0.6	0.7	
positive going threshold	V _{CCUV} +	-	7.5	8.6	9.7	
V_{CC} and V_{BS} Supply under voltage	V _{BSUV} -		70 91	0.2	v	
negative going threshold	Vccuv-	-	7.0	7.0 8.1	9.2	
V_{CC} and V_{BS} Supply under voltage	VBSHY			0.5		
lockout hysteresis	Vссну	-	-	0.5	-	
SWITCHING CHARACTERISTICA						
Turn-On Rise Time	t _R		-	18	30	
Turn-Off Fall TIME	t⊧	C∟ = 1000pF,	I	13	20	
Turn-On Propagation Delay	ton	See Function	-	128	150	
Turn-Off Propagation Delay	t _{off}	Timing Diagram	-	124	150	ns
Shutdown Propagation Delay	t _{sd}	Fig.2.3.4.5	-	120	150	
Delay matching, turn-on/off	MT		-	10	-	

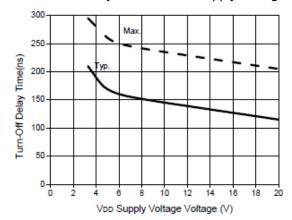


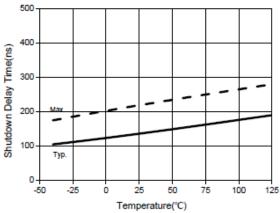
TYPICAL PERFORMANCE CHARACTERISTICS

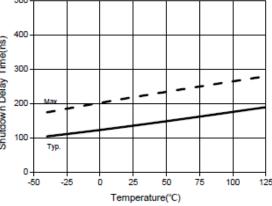

1. Turn-On Delay vs. Temperature


3. Turn-On Delay Time vs. V_{DD} Supply Voltage

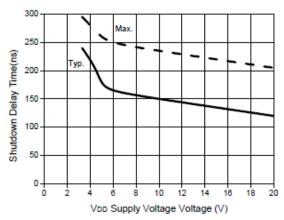
5. Turn-Off Delay Time vs. Supply Voltage

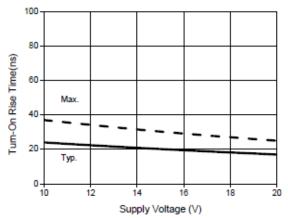

2. Turn-On Delay vs. Supply Voltage


500 400 Tum-Off Delay Time(ns) 300 Max 200 100 Тур. 0--50 25 75 -25 Ó 50 100 125 Temperature(°C)


4. Turn-Off Delay Time vs. Temperature

6. Turn-Off Delay Time vs. V_{DD} Supply Voltage





9. Shutdown Delay Time vs. V_{DD} Supply Voltage

11. Turn-On Rise Time vs. Voltage

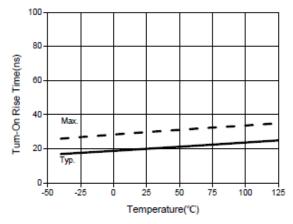
400 Shutdown Delay Time(ns) 300 Max 200 Тур 100 0+ 10

14

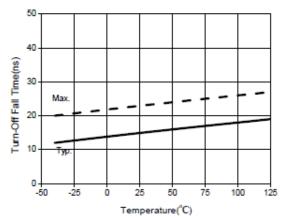
Supply Voltage (V)

16

18


20

Shutdown Delay Time vs. Supply Voltage

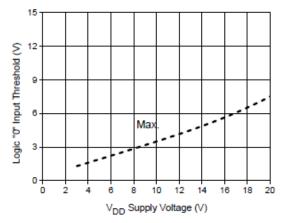

8.

10. Turn-On Rise Time vs. Temperature

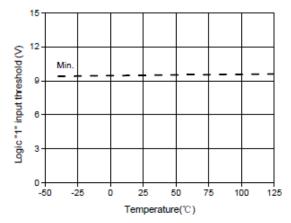
12

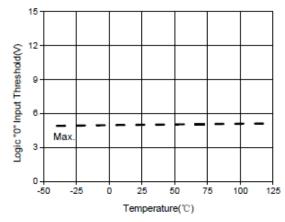
Shutdown Delay Time vs. Temperature

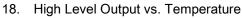
7.

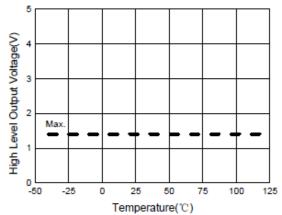


15. Logic "1" Input Voltage vs. Voltage

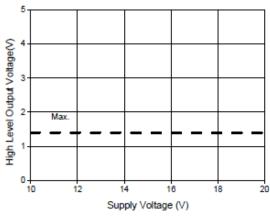

13. Turn-Off Fall Time vs. Voltage

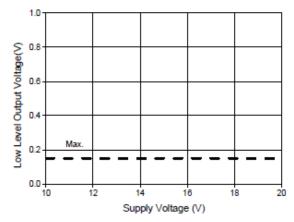

17. Logic "0" Input Voltage vs. Voltage

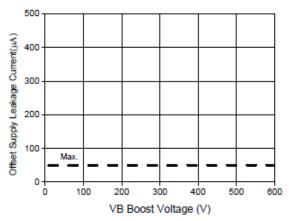


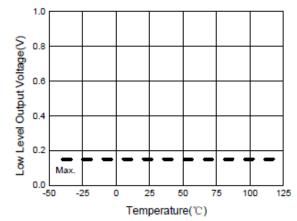

14. Logic "1" Input Voltage vs. Temperature

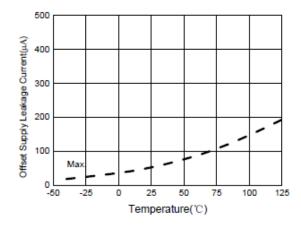
16. Logic "0" Input Voltage vs. Temperature

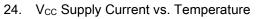


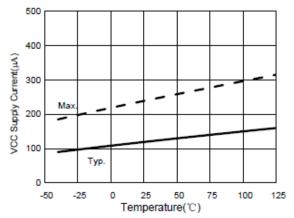


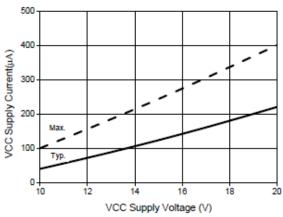

19. High Level Output vs. Voltage

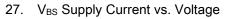

21. Low Level Output vs. Voltage

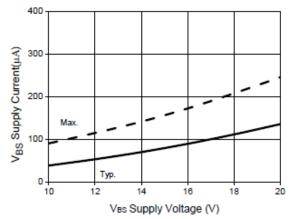

23. Offset Supply Current vs. Voltage

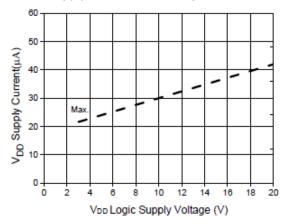



20. Low Level Output vs. Temperature

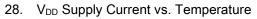

22. Offset Supply Current vs. Temperature

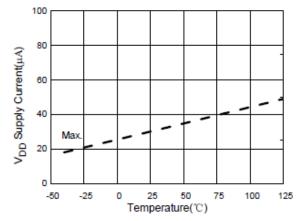




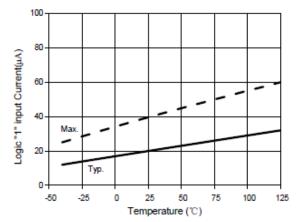


25. Vcc Supply Current vs. Voltage

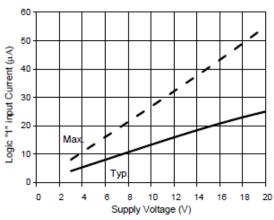

29. V_{DD} Supply Current vs. Voltage



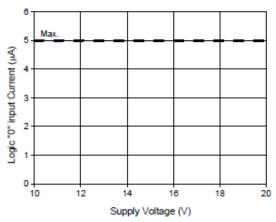
400 V_{BS} Supply Current(µA) 300 200 100 Max Тур 0 -25 100 125 -50 0 25 50 75 Temperature(°C)

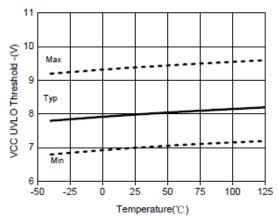

V_{BS} Supply Current vs. Temperature

26.

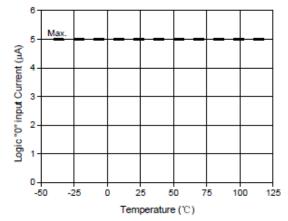


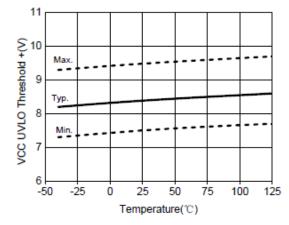
30. Logic "1" Input Current vs. Temperature

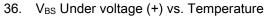


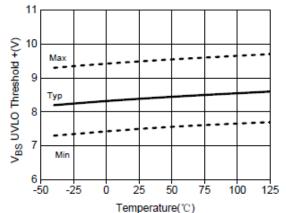


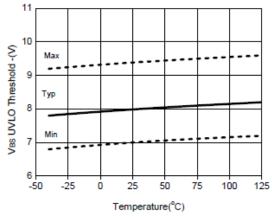
31. Logic "1" Input Current vs. Voltage

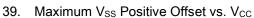


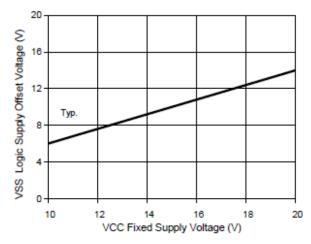

35. V_{CC} Under voltage (-) vs. Temperature



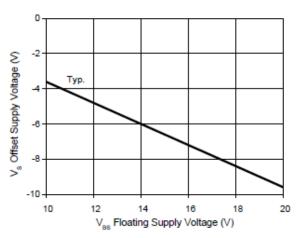

32. Logic "0" Input Current vs. Temperature


34. V_{CC} Under voltage (+) vs. Temperature

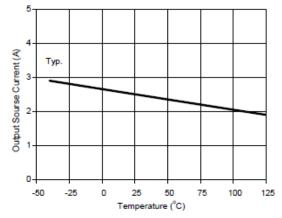


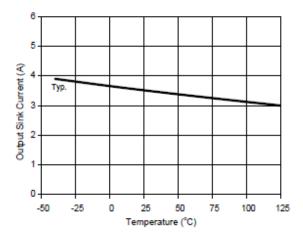


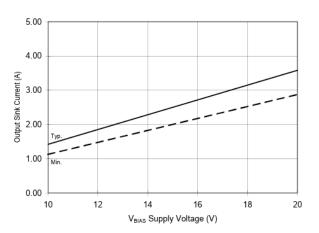
37. V_{BS} Under voltage (-) vs. Temperature



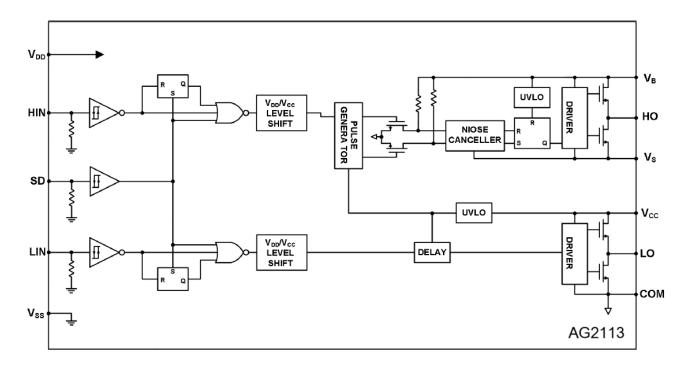
Supply Voltage



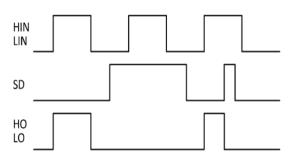

Supply Voltage


38. Output Source Current vs. Temperature

40. Output Sink Current vs. Temperature



42. Output Source Current vs. Voltage


BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

Fig.1 Input & Output Timing Diagram

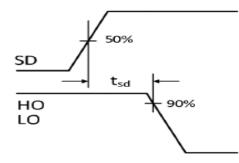
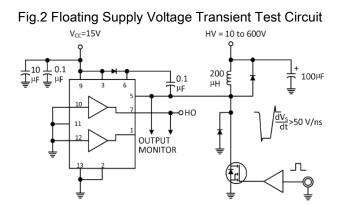
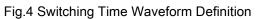
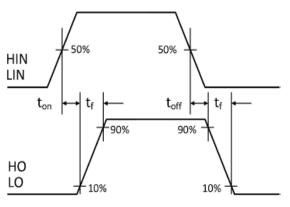
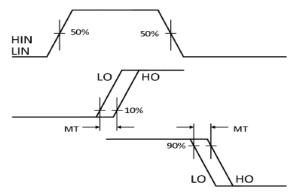
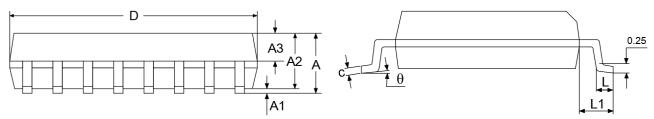
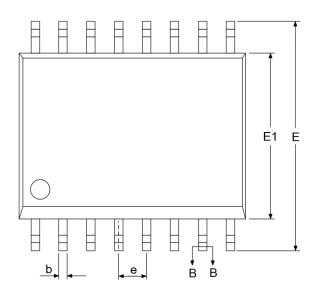





Fig.5 Shutdown Waveform Definition

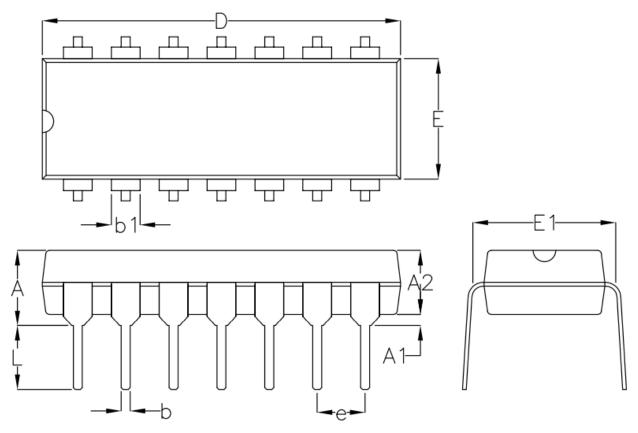




Fig.6 Delay Waveform Definition



PACKAGE INFORMATION

Dimension in SOP16 (Unit: mm)



O-maked	MILLIMETER				
Symbol	Min.	Max.			
A	-	2.650			
A1	0.100	0.300			
A2	2.250	2.350			
A3	0.970	1.070			
b	0.350	0.440			
b1	0.340	0.390			
с	0.250	0.310			
c1	0.240	0.260			
D	10.100	10.500			
E	10.260	10.600			
E1	7.300	7.700			
е	1.27 BSC				
L	0.550	0.850			
L1	1.4 BSC				
θ	0°	8°			

Dimension in DIP14 (Unit: mm)

Symbol	MILLIMETER			
Symbol	Min.	Max.		
А	3.700	5.330		
A1	0.381	0.710		
A2	3.200	3.600		
b	0.360	0.560		
b1	1.143	1.778		
D	18.190	19.700		
E	6.200	6.600		
E1	7.620	8.255		
е	2.540			
L	2.920	3.800		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.