

DESCRIPTION

The A4766 is a bidirectional 2-channel single-pole single-throw (SPST) analog switch, which is designed to operate from 1.8V to 5.5V.

The A4766 device can handle both analog and digital signals. It features bandwidth(300MHz) and low on-resistance (4.5Ω TYP).

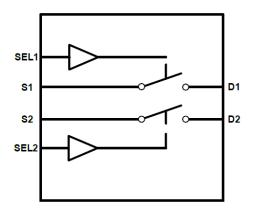
Each switch section has its own enable-input control (SEL). A high-level voltage applied to SEL turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

The A4766 is available in MSOP8 and DFN8(2x3) package.

ORDERING INFORMATION

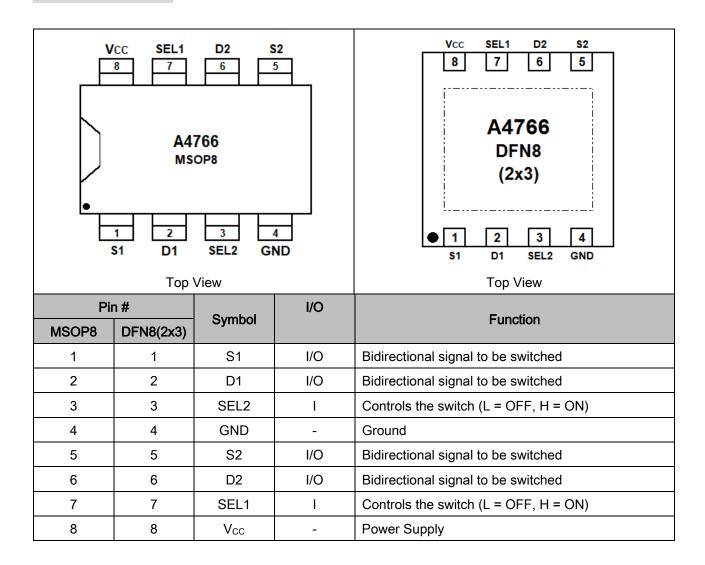
Package Type	Part Number			
MSOP8	MS8	A4766MS8R		
SPQ: 4,000pcs/Reel	IVIOO	A4766MS8VR		
DFN8(2x3)	J8	A4766J8R		
SPQ: 3,000pcs/Reel	Jo	A4766J8VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- 4.5Ω Switches connect input to output
- Bandwidth: 300MHz
- High Speed, Typically 30ns
- Supply Range: +1.8V to +5.5V
- Rail-to-Rail Operation
- TTL/CMOS Compatible
- Extended Industrial Temperature
- Range: -40°C to +125°C
- Available in MSOP8 and DFN8(2x3) package

APPLICATION

- Wireless Devices
- Audio and Video Signal Routing
- Portable Computing
- Wearable Devices
- Signal Gating, Chopping, Modulation or Demodulation (Modem)
- Cell Phones


FUNCTION DIAGRAM

REV1.0 - NOV 2021 RELEASED - -1

PIN DESCRIPTION

FUNCTION TABLE

Select Inputs	Cuitab Ctatua	
SEL1/SEL2	Switch Status	
High	All Switches ON	
Low	All Switches OFF	

NOTE: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

REV1.0 - NOV 2021 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range, unless otherwise noted

V _{CC} , Supply Voltage ^{NOTE1}	-0.3V ~ 6.0V					
V _{IN} , Input Voltage ^{NOTE1,2}	-0.3V ~ 6.0V					
Vo, Switch I/O Voltage ^{NOTE1,2,3}	-0.3V ~ V _{CC} +0.3V					
I _{IK} , Control Input Clamp Current		V ₁ <0	-50mA			
I _{I/OK} , I/O Port Diode Current		$V_{I/O}$ < 0 or $V_{I/O}$ > V_{CC}	-50mA			
I⊤, On-State Switch Current	V_{IO} =0 to V_{CC}	-50mA ~ 50mA				
Continuous Current Through Vcc or G		-100mA ~ 100mA				
T _J , Junction Temperature		150°C				
T _{STG} , Storage Temperature		-65°C ~ 150°C				
ESD Ratings						
Visco Electrostatia Discharge	Human-body model (HBM)		±2000V			
V _(ESD) , Electrostatic Discharge	Machine mode	el (MM)	±300V			

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range, unless otherwise noted^{NOTE2}

Parameter	Symbol	Conditions	Min.	Max.	Unit
Supply Voltage	Vcc		1.8	5.5	V
Operating Temperature	T _A		-40	+125	°C

NOTE1: All voltages are with respect to ground, unless otherwise specified.

NOTE2: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

NOTE3: This value is limited to 5.5 V maximum.

REV1.0 - NOV 2021 RELEASED - - 3 -

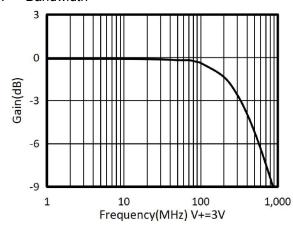
ELECTRICAL CHARACTERISTICS

 V_{CC} = 5.0 V or 3.3V, Typical values are at T_A = +25°C, unless otherwise noted

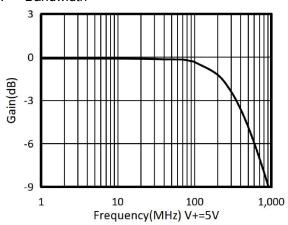
Parameter	Symbol	Conditions	Vcc	Temp	Min.	Тур.	Max.	Unit
ANALOG SWITCH								
Analog Signal Range	Vs, VD			-40°C to +125°C	0	-	Vcc	V
			5) /	+25°C	ı	4.5	8	
On-Resistance	Ron	$V_S = V_{CC} / 2$, $I_{SD} = -10 \text{mA}$,	5V	- 40°C to +125°C	ı	-	8.5	Ω
On-Resistance	KON	Switch ON, See Figure 1	3.3V	+25°C	ı	7	10	Ω
			3.34	- 40°C to +125°C	ı	-	10.5	12
On Decistance			5V	+25°C	ı	0.15	0.3	
On-Resistance Match Between	Λ D	$V_S = V_{CC} / 2$, $I_{SD} = -10 \text{mA}$,	5	- 40°C to +125°C	ı	-	0.4	Ω
Channels	ΔR_{ON}	Switch ON, See Figure 1	3.3V	+25°C	ı	0.15	0.3	Ω
Charmers			3.3V	- 40°C to +125°C	ı	_	0.4	12
			5 \/	+25°C	ı	2	3	
On-Resistance	D		5V	- 40°C to +125°C	ı	-	3.3	Ω
Flatness	RFLAT(ON)		0.01/	+25°C	ı	3	4	0
		Switch ON, See Figure 1	3.3V	- 40°C to +125°C	-	-	4.3	Ω
Source, Drain OFF Leakage Current	I _{D(OFF)} , I _{S(OFF)}	$V_D = 0.3V$, $V_{CC}/2$, $V_S = V_{CC}/2$, $0.3V$ See Figure 2	1.8 to 5.5V	- 40°C to +125°C	-	-	1	μΑ
Channel ON Leakage Current	I _{D(ON)} , I _{S(ON)}	V_D = 0.3V, Open V_S = Open, 0.3V See Figure 3	1.8 to 5.5V	- 40°C to +125°C	-	-	1	μΑ
DIGITAL CONTROL	- INPUTS							
Input High Voltage	.,		5V	- 40°C to +125°C	1.5	_	-	V
input High Voltage	ViH		3.3V	- 40 C to +125 C	1.3	-	-	V
Input Low Voltage	\/		5V	- 40°C to +125°C	ı	-	0.6	V
input Low Voltage	V _{IL}		3.3V	-40 C (0 + 125 C	-	-	0.5	V
Input Leakage Current	lin	V _{IN} = V _{IO} or 0	1.8 to 5.5V	- 40°C to +125°C	-	-	1	μΑ

NOTE4: All unused digital inputs of the device must be held at VIO or GND to ensure proper device operation.

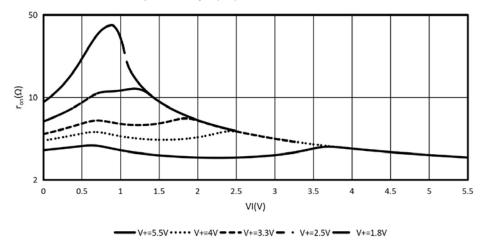
REV1.0 - NOV 2021 RELEASED - - 4 -


Parameter	Symbol	Conditions		Vcc	Temp	Min.	Тур.	Max.	Unit
DYNAMIC CHARACTERISTICS									
Turn-On Time				5V	+25°C	-	30	-	
Turn-On Time	ton	Vs = Vcc, RL = 30	00Ω,	3.3V	+25 C	-	40	-	ns
Turn Off Time o	1	C∟= 35pF, See F	igure 4	5V	105°C	-	25	-	
Turn-Off Time	t off			3.3V	+25°C	1	30	-	ns
Break-Before-Make	4	Vs = 3V, RL = 300	0Ω,	5V	+25°C	ı	5	-	20
Time Delay	t ввм	C∟= 35pF, See F	C∟= 35pF, See Figure 5		+25 C	-	8	-	ns
-3dB Bandwidth	BW	Switch ON, R _L = See Figure 6	50Ω,	5V	+25°C	-	300	-	MHz
0%1 1 11		R _L = 50Ω,	f = 10kHz		+25°C	-	-52	-	dB
Off Isolation	Oiso	Switch OFF, See Figure 7	f = 1MHz		+25°C	ı	-71	-	dB
Source, Drain OFF	Cs(OFF),	Vs= Vcc/2 or GN	ID,		+25°C	ı	5		рF
Capacitance	CD(OFF)	Switch OFF			125 0	_	3	_	рі
Source, Drain ON	Cs(ON),	Vs= Vcc/2 or GN	ID,		+25°C	_	15		рF
Capacitance	CD(ON)	Switch ON			125 0		10	_	рі
POWER REQUIREMENTS									
Power Supply	Vcc				- 40°C to +125°C	1.8	_	5.5	V
Range	VCC				- 40 C to + 125 C	1.0	_	5.5	v
Power Supply	Icc	V _{IN} = GND or V _{CO}		5V	- 40°C to +125°C	_		1	μA
Current	ICC	VIIN - GIND OF VCC	,	30	- 40 C to + 125 C	_	_	'	μΛ

REV1.0 - NOV 2021 RELEASED - - 5 -



TYPICAL PERFORMANCE CHARACTERISTICS


1. Bandwidth

2. Bandwidth

3. Typical R_{ON} as a Function of Input Voltage (V_I) for $V_I = 0$ to V+

REV1.0 - NOV 2021 RELEASED - - 6 -

Parameter Measurement Information

Figure 1. ON-State Resistance (RoN)

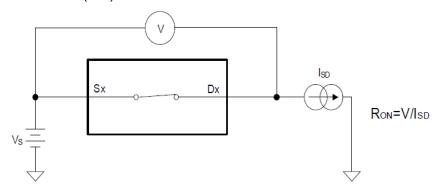


Figure 2.OFF-State Leakage Current (I_{D(OFF)}, I_{S(OFF)})

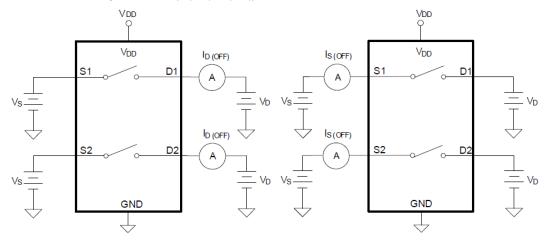
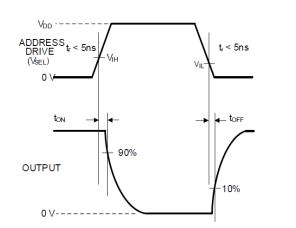



Figure 3. ON-State Leakage Current (ID(ON), IS(ON))

REV1.0 - NOV 2021 RELEASED - - 7 -

Figure 4. Turn-On (ton) and Turn-Off Time (toff)

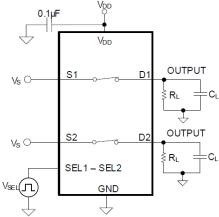


Figure 5. Break-Before-Make Time (t_{BBM})

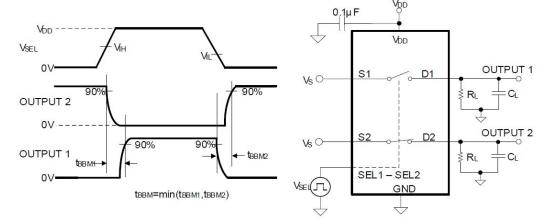
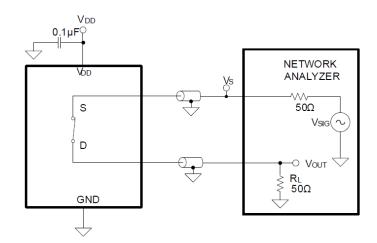



Figure 6. Bandwidth (BW)

REV1.0 - NOV 2021 RELEASED - - 8 -

Figure 7.OFF Isolation (OISO)

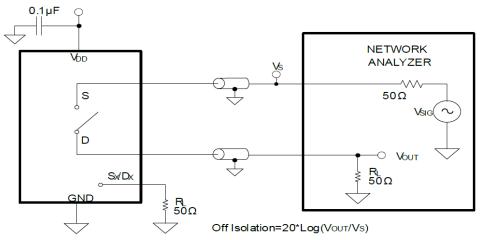


Figure 8. Crosstalk (X_{TALK})

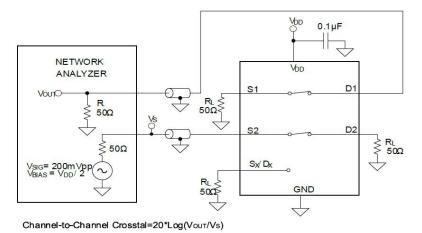
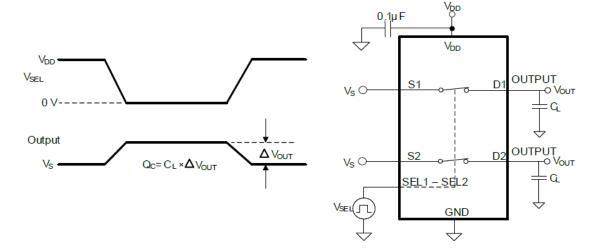
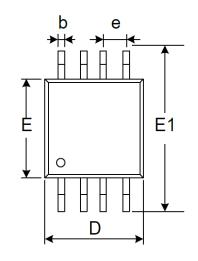



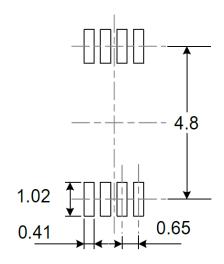
Figure 9. Charge Injection (Qc)


REV1.0 - NOV 2021 RELEASED - - 9 -

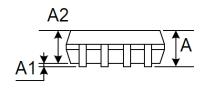
TYPICAL APPLICATION

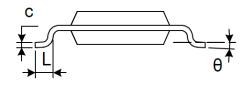
The A4766 can be used in any situation where a Dual SPST switch would be used and a solid-state, voltage-controlled version is preferred. The A4766 allows on/off control of analog and digital signals with a digital control signal. All input signals should remain between 0V and V_{CC} for optimal operation.


Figure 10. Typical Application Schematic

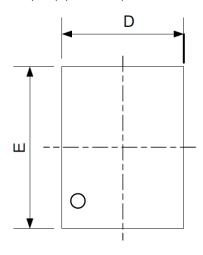


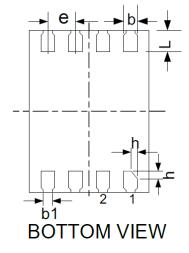
REV1.0 - NOV 2021 RELEASED - - 10 -

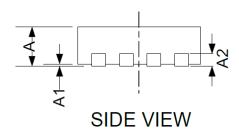

PACKAGE INFORMATION


Dimension in MSOP8 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	Millim	neters	Inches		
Symbol	Min	Max	Min	Max	
Α	0.820	1.100	0.030	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650 BSC		0.026 BSC		
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	


REV1.0 - NOV 2021 RELEASED - - 11 -

Dimension in DFN8(2x3) (Unit: mm)

TOP VIEW

Symbol	Millim	neters	Inches		
Symbol	Min	Max	Min	Max	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.180	0.250	0.007	0.010	
b	0.180	0.300	0.007	0.012	
b1	0.16	REF	0.006 REF		
D	1.900	2.100	0.075	0.083	
Е	2.900	3.100	0.114	0.122	
е	0.500	0.500 TYP 0.019 TYP			
L	0.350	0.450	0.014	0.018	
h	0.075	0.175	0.003	0.007	

REV1.0 - NOV 2021 RELEASED - - 12 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - NOV 2021 RELEASED - - 13 -