

DESCRIPTION

The A3232 consists of two drivers, two receivers, and a dual charge-pump circuit with ±12kV IEC 61000-4-2 Contact Discharge ESD protection.

www.ait-ic.com

The A3232 meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector.

The charge pump and four small external capacitors allow operation from a single 3V to 5.5V supply. The A3232 operates at data signaling rates up to 250 kbps.

The A3232 is available in SOP16 and TSSOP16 package.

ORDERING INFORMATION

Package Type	Part Number			
SOP16	Mag	A3232M16R		
SPQ: 2,500pcs/Reel	M16	A3232M16VR		
TSSOP16	TMY46	A3232TMX16R		
SPQ: 2,500pcs/Reel	TIVIX16	A3232TMX16VR		
Note	V: Halogen free Package R: Tape & Reel			
AiT provides all RoHS products				

FEATURES

- RS-232 Bus-terminal ESD protection Exceeds
- ±12kV (IEC61000-4-2, Contact Discharge)
- ±15kV (IEC61000-4-2, Air-Gap Discharge)
- Meets the Requirements of TIA/EIA-232-F standard
- Operates with 3V to 5.5V VCC Supply
- Operates up to 250kbps
- Two Drivers and Two Receivers
- External Capacitors: 4 × 0.1 uF
- Accepts 5V Logic Input With 3.3V Supply
- Operation Temperature: -40°C ~ +125 °C

APPLICATION

- Industrial PCs
- Wired Networking
- Data Center and Enterprise Networking
- Battery-Powered Systems
- PDAs, Hand-held Equipment
- Notebooks, Laptops, Palmtop PCs
- Printers

BLOCK DIAGRAM

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Min.	Max.	Units
Supply voltage		Vcc	-0.3	6	V
Positive output supply voltage	Positive output supply voltage		-0.3	7	V
Negative output supply voltage		V-	0.3	-7	V
Supply voltage difference		V+ – V-		13	V
Input voltage	Drivers	Vı	-0.3	6	V
	Receivers		-25	25	V
	Drivers	Vo	-13.2	13.2	V
	Receivers		-0.3	V _{CC} + 0.3	V
Operating virtual junction temperature		TJ		150	°C
Storage temperature		T _{STG}	-65	150	°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min.	Max.	Units	
Supply voltage		V _{CC} = 3.3 V		3	3.6	V
		V_{CC} = 5 V		4.5	5.5	V
Driver high-level input		V _{CC} = 3.3 V	Vін	2	5.5	v
voltage	DIN	V_{CC} = 5 V		2.4	5.5	
Driver low-level input		DIN	VIL	0	0.8	V
Receiver input voltage		RIN	VI	-2.5	25	V
Operating free-air temperature			T _A	-40	125	°C

ELECTRICAL CHARACTERISTICS

C1–C4 = 0.1μ F at V_{CC} = $3.3V\pm0.3V$; C1 = 0.047μ F, C2–C4 = 0.33μ F at V_{CC} = $5V\pm0.5V$, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Supply current	lcc	No load, V_{CC} = 3.3 V or 5 V			1.5		mA
Driver							
High-level output voltage	Vон	D_{OUT} at R_L = 3 k Ω to GND, DIN = GND		5	5.4		V
Low-level output voltage	V _{OL}	D _{OUT} at R _L = 3 k DIN = V _{CC}	D _{OUT} at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V _{CC}		-5.4		V
High-level input current	Ін	$V_{I} = V_{CC}$			±0.01	±1	μA
Low-level input current	lı∟	V⊢at GND			±0.01	±1	μA
Short-circuit output current	los	V _{CC} = 3.6 V, V _O V _{CC} = 5.5 V, V _O	$V_{CC} = 3.6 V, V_0 = 0 V$ $V_{CC} = 5.5 V, V_0 = 0 V$		±30	±60	mA
Output resistance	ro	$V_{CC}, V+, V-=0$	V, V ₀ = ±2 V	300	10M		Ω
Receiver	•						
High-level output voltage	Vон	I _{OH} = –1 mA		Vcc-0.6	Vcc-0.1		V
Low-level output voltage	Vol	l _{o∟} = 1.6 mA	lor = 1.6 mA			0.4	
Positive-going input threshold		V _{CC} = 3.3 V			1.5	2.4	
voltage	VIT+	V _{CC} = 5 V			2.0	2.4	V
Negative-going input	Vit	V _{CC} = 3.3 V		0.6	1.1		V
threshold voltage	V11-	V _{CC} = 5 V	$V_{CC} = 5 V$		1.5		v
Input hysteresis (VIT+ -VIT-)	V _{hys}				0.4		V
Input resistance	ri	$V_1 = \pm 3 V$ to $\pm 25 V$		3	5	7	kΩ
Switching							
Maximum data rate		$R_L = 3 k\Omega$, $C_L = 1000 pF$, One D_{OUT} switching		250			kbps
Driver pulse skew	tsk(p)	R_L = 3 kΩ to 7 kΩ, C_L = 150pF to 2500 pF, see Fig2.			100		ns
Driver slew rate, transition region	SR(tr)	$R_{L} = 3 k\Omega to$ 7 kΩ	C _L = 150 pF to 1000 pF C _L = 150 pF	6		30	V/µs
		v _{cc} = 3.3 v to 2500 pF		4		30	
Receiver propagation delay time, low-to high-level output	t _{PLH}	- C∟ = 150 pF see Fig 3.			150		ns
Receiver propagation delay	toui				150		ns
time, high- to low-level output							
Receiver pulse skew	tsk(p)				60		ns

* Short-Circuits durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time

** Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

TYPICAL APPLICATION

Fig.1 Typical Operating Circuit

Vcc	C1	C2, C3, C4
3.3V±0.3V	0.1 µF	0.1 µF
5V±0.5V	0.047 µF	0.33 µF
3V to 5.5V	0.1 µF	0.47 µF

Non Polorized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, then should be connected as shown.

Fig.2 Driver Pulse Skew

Test Circuit

Fig.3 Receiver Propagation Delay Times

Voltage Waveforms

Voltage Waveforms

PACKAGE INFORMATION

Dimension in SOP16 (Unit: mm)

Dimension in TSSOP16 (Unit: mm)

SECTION B-B

Symbol	Min.	Max.	
А	-	1.200	
A1	0.050	0.150	
A2	0.900	1.050	
A3	0.340	0.540	
b	0.200	0.280	
b1	0.200	0.240	
С	0.100	0.190	
c1	0.100	0.150	
D	4.860	5.060	
E	6.200	6.600	
E1	4.300	4.500	
е	0.650 BSC		
L	0.450	0.750	
L1	1.000 REF		
L2	0.250 BSC		
R	0.090	-	
R1	0.090	-	
S	0.200	_	
θ1	0 °	8 °	
θ2	10°	14°	
θ3	10°	14°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.