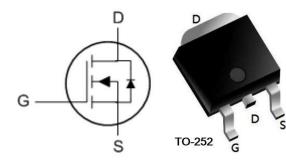


DESCRIPTION

The AM15N10 is available in TO-252 Package

BVDSS	RDSON	ID
100V	85mΩ	15A


FEATURE

- Advanced high cell density Trench Technology
- R_{DS(ON)typ.}=85mΩ @ V_{GS}=10V
- Excellent dv/dt effect decline
- Super Low Gate Charge

ORDERING INFORMATION

Package Type	Part Number		
TO-252	Ľ	AM15N10DR	
SPQ: 2,500pcs/Reel	D	AM15N10DVR	
Nata	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise specified.

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	100	V
Gate-Source Voltage		V _{GSS}	±20	V
	Tc = 25°C		15	А
	T _C = 100°C		7.7	А
Continuous Drain Current, V _{GS} @10V ⁽¹⁾	T _A =25°C	lo	3	А
	T _A =70°C		2.4	А
Pulsed Drain Current ⁽²⁾		I _{DM}	24	А
Single Pulsed Avalanche Energy ⁽³⁾		Eas	6.1	mJ
Avalanche Current		I _{AS}	11	А
Total Power Dissipation T_c =25°C ⁽⁴⁾		P	34.7	W
Total Power Dissipation T _A =25°C ⁽⁴⁾		PD	2	W
Operating and Storage Temperature Range		Tj, Tstg	-55 to +175	°C
THERMAL DATA				
Thermal Resistance Junction-ambient ⁽¹⁾		Reja	62	°C/W
Thermal Resistance Junction-Case (1)		R _{ejc}	3.6	°C/W

(1) The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.

(2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

(3) The EAS data shows Max. rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS}=11A

(4) The power dissipation is limited by 150°C junction temperature

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$T_A = 25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	100	-	-	V
BVDSS Temperature Coefficient	$^{\Delta}BV_{DSS}/^{\Delta}T_{J}$	I⊳=1mA	-	0.098	-	V/°C
	I _{DSS}	V _{DS} =80V , V _{GS} =0V , T _J =25°C	-	-	1	- μΑ
Drain-Source Leakage Current		V _{DS} =80V , V _{GS} =0V , T _J =55℃	-	-	5	
Gate-Source Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V	-	-	±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	VGS (th)		1.0	-	2.5	V
V_{GS} (th) Temperature Coefficient	${}^{\vartriangle}V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250µA	-	-4.57	-	mV/ ℃
Static Drain-Source on-		V _{GS} =10V, I _D =10A	-	85	112	mΩ
Resistance (2)	Rds(on)	V _{GS} =4.5V, I _D =8A	-	105	120	
DYNAMIC CHARACTERISTICS						
Input Capacitance	Ciss		-	1535	-	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V,	-	60	-	pF
Reverse Transfer Capacitance	Crss	f=1.0MHz	-	37	-	
Total Gate Charge (10V)	Qg	.)/ −00)/	-	26.2	-	
Gate-Source Charge	Q _{gs}	V_{DS} =80V,	-	4.6	-	nC
Gate-Drain Charge	Q_{gd}	I _D =10A, V _{GS} = 10V	-	5.1	-	
Gate Resistance	Rg	V _{DS} =0V +, V _{GS} =0V, f=1MHz	-	2	-	Ω
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	t _{d (ON)}		-	4.2	-	
Turn-on Rise Time	tr	V _{DS} =50V, I _D =10A,		8.2	-	20
Turn-Off Delay Time	td (OFF)	R _G =3.3Ω, V _{GS} =10V	-	35.6	-	nS
Turn-Off Fall Time	t _f		-	9.6	-	

(2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
DIODE CHARACTERISTICS						
Continuous Source Current	ls		-	-	15	А
Pulsed Source Current ⁽²⁾⁽⁵⁾	lsм	V _G =V _D =0V, Force Current		-	24	А
Diode Forward Voltage (2)	Vsd	V _{GS} =0V, I _S =1A, T _J =25°C	-	-	1.2	V
Reverse Recovery Time	trr	l⊧=10A , dl/dt=100A/μs , Tյ=25℃		37	-	nS
Reverse Recovery Charge	Qrr			27.3	-	nC

(1) The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

(2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

(5) The data is theoretically the same as I_D and I_{DM} , should be limited by total power dissipation in application.

TYPICAL PERFORMANCE CHARACTERISTICS

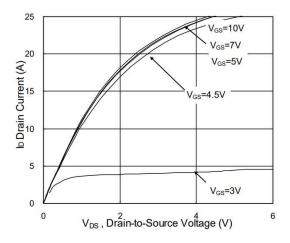
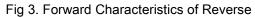



Fig 1. Typical Output Characteristics

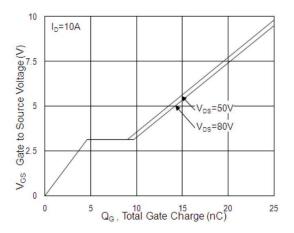
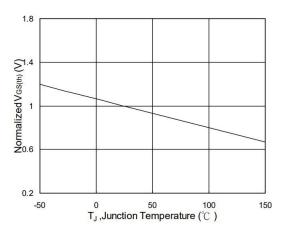



Fig 5. Normalized $V_{GS\,(th)}$ vs. T_J

Fig 2. On-Resistance vs. Gate-Source

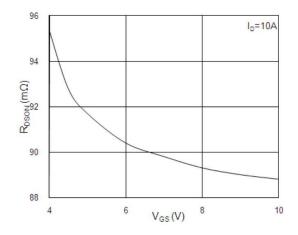


Fig 4. Gate-Charge Characteristics

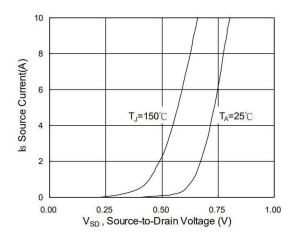
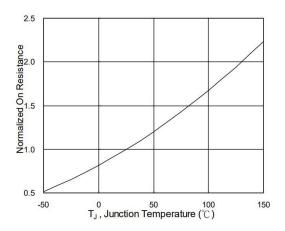
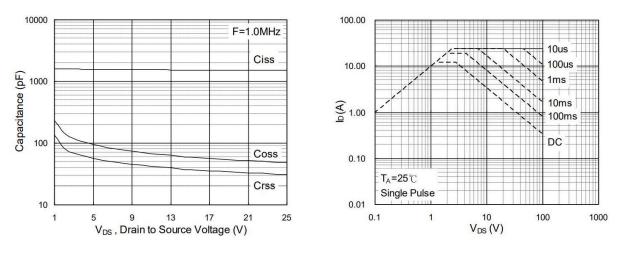
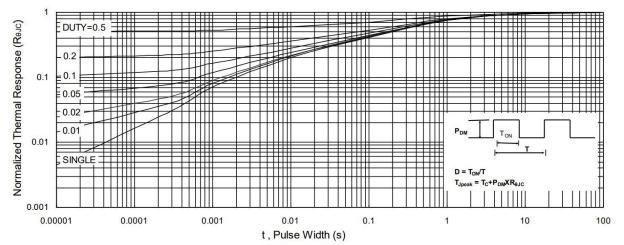
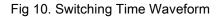
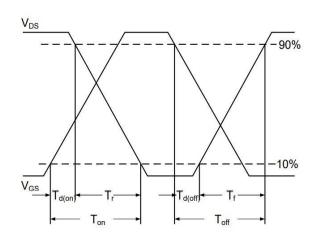
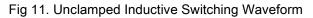
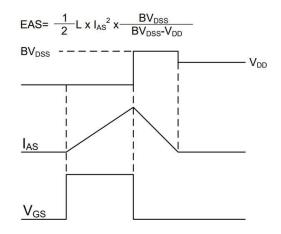



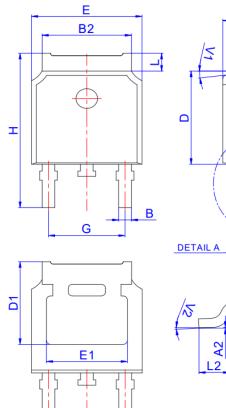
Fig 6. Normalized RDSON vs. TJ

Fig 7. Capacitance


Fig 8. Safe Operating Area





PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

DETAIL A	5)
2 42 2 42	Vn Vn
L2	DETAIL A

C2

Symbol	Min.	Max.		
A	2.10	2.50		
A2	0	0.10		
В	0.66	0.86		
B2	5.18	5.48		
С	0.40	0.60		
C2	0.44	0.58		
D	5.90	6.30		
D1	5.30REF			
E	6.40	6.80		
E1	4.63			
G	4.47	4.67		
Н	9.50	10.70		
L	1.09	1.21		
L2	1.35 1.65			
V1	7"			
V2	0°	6°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.