AM10T65
IGBT
650V, 10A IGBT MOSFET

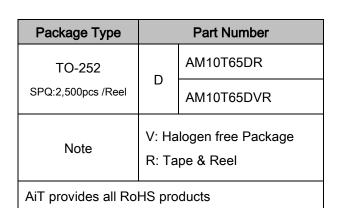
DESCRIPTION

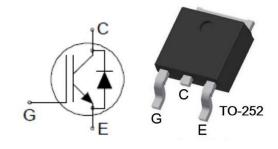
The AM10T65 is available in TO-252 Packages.

VCES	IC	VCE	PD
650	10A	1.4	83

FEATURE

- Fast Switching
- Low Vce (sat)
- Positive temperature coefficient
- Very soft, fast recovery anti-parallel diode


APPLICATION


- UPS
- Air Condition
- Motor Drives

ORDERING INFORMATION

PFC

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	С	Collector
3	E	Emitter

AM10T65
IGBT
650V, 10A IGBT MOSFET

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Value	Unit
Collector-Emitter Voltage	Vces	650	V
Collector Current @ T _C = 25 °C		30	Α
Collector Current @ T _C = 100 °C	Ic	10	Α
Pulsed Collector Current * @ T _C = 25 °C	Ісм	40	А
Diode Continuous Forward Current @ T _C = 25 °C		20	А
Diode Continuous Forward Current @ T _C = 100 °C	I _F	10	А
Diode Maximum Forward Current @ T _C = 25 °C	I _{FM}	30	А
Gate-Emitter Voltage	V _{GES}	±30	V
Power Dissipation @ T _C = 25 °C	PD	83	W
Operating Junction Temperature Range	TJ	150	°C
Storage Temperature Range	T _{stg}	-55 to 150	°C
Maximum Temperature for Soldering	TL	260	°C
THERMAL RESISTANCE			
Junction-to-Case (IGBT)	Rejc	1.5	°C/W
Junction-to-Case (Diode)	Rejc	2.5	°C/W
Junction-to-Ambient	R _θ ЈА	62	°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{*}Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS

T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	Vces	V _{GE} = 0V, I _C = 250μA	650	-	-	V
Collector-Emitter Leakage Current	Ices	V _{CE} = 650V, VGE = 0V	-	-	4	μΑ
Gate-Emitter Leakage Current	I _{GES(F)}	V _{GE} = +30V	-	-	200	nA
Gate-Emitter Reverse Leakage	I _{GES(R)}	V _{GE} = -30V	-	-	-200	nA
ON CHARACTERISTICS						
Collector-Emitter Saturation Voltage	V _{CE} (sat)	V _{GE} = 15V, I _C = 10A	-	1.4	1.75	V
Gate Threshold Voltage	V _{GE (TH)}	V _{CE} = V _{GE} , I _C = 1mA	4.5	5.2	5.9	V
Pulse width tp≤300μs, δ≤2%						
Dynamic CHARACTERISTICS						
Input Capacitance	Ciss	V _{GE} = 0V	-	947	-	
Output Capacitance	Coss	V _{CE} = 25V	-	32	-	pF
Reverse Transfer Capacitance	Crss	f = 1.0MHz	-	9	-	
Total Gate Charge	Qg	IC = 10A V _{CE} = 520V		39 -		nC
		V _{GE} = 15V	-		IIC	
Switching CHARACTERISTICS						
Turn-on Delay Time	td(on)		-	20	-	
Rise Time	tr	Ic =10A V _{CE} = 400V	-	8	-	
Turn-Off Delay Time	td(off)		-	73	-	ns
Fall Time	tf	V _{GE} = 15V	-	65	-	
Turn-On Switching Loss	Eon	R _G =10Ω	-	0.15	-	
Turn-Off Switching Loss	Eoff	T=25°C Inductive Load	-	0.24	-	mJ
Total Switching Loss	Ets		-	0.39	-	
Diode CHARACTERISTICS						
Diode Forward Voltage	V _F	I _F =10A	-	1.8	2.1	V
Reverse Recovery Time	Trr		-	127	-	ns
Reverse Recovery Charge	Qrr	I _F =10A, di/dt=200A/us,	-	286	-	nC
riororoo riooorory oriango		,				

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Forward Bias Safe Operating Area

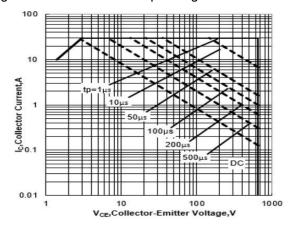


Fig 3. Collector Current vs Case Temperature

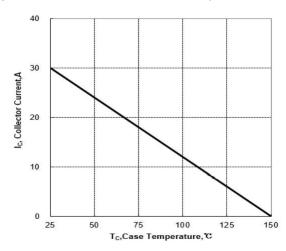


Fig 5. Typical Output Characteristics(T_A=25°C)

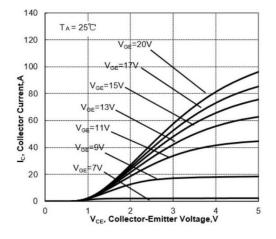


Fig 2. Power Dissipation vs Case Temperature

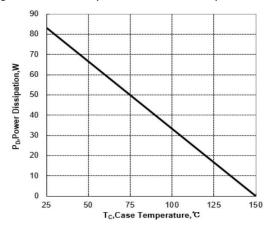


Fig 4. Typical Transfer Characteristics

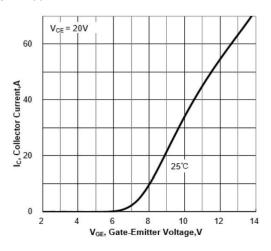


Fig 6. Typical Gate Charge

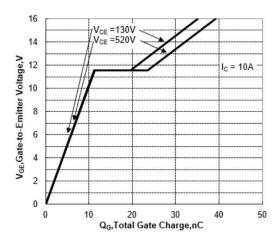


Fig 7. Typical Capacitance
vs Collector-Emitter Voltage

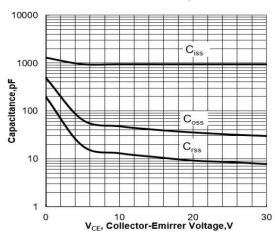


Fig 9. Diode Transient Thermal Impedance vs Pulse Width

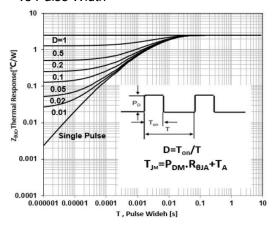
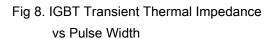



Fig 11. Inductive Switching Waveforms

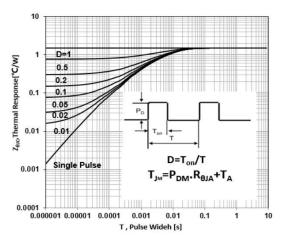
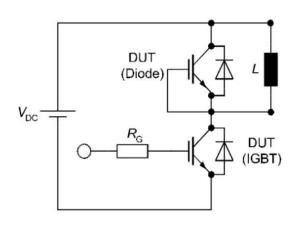
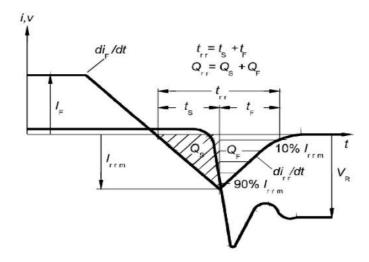
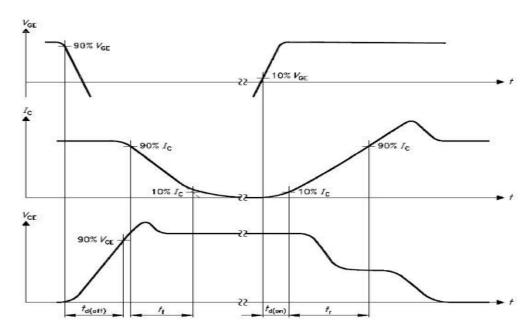
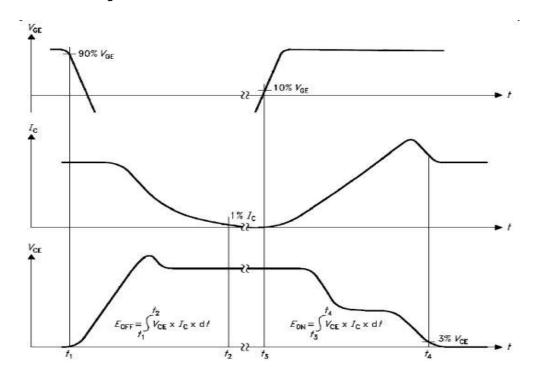
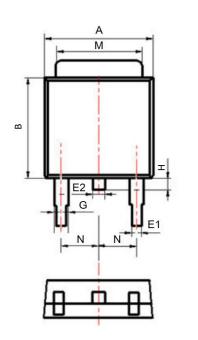
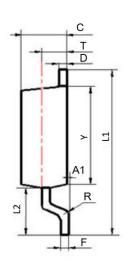




Fig 10. Inductive Switching Test Circuit


Fig 12. Inductive Switching Waveforms



PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Symbol	Min.	Max.
Α	6.30	6.90
A1	0	0.13
В	5.70	6.30
С	2.10	2.50
D	0.30	0.60
E1	0.60	0.90
E2	0.70	1.00
F	0.30	0.60
G	0.70	1.20
L1	9.60	10.50
L2	2.70	3.10
Н	0.60	1.00
M	5.10	5.50
N	2.09	2.49
R	0	.3
Т	1.40	1.60
Υ	5.10	6.30

AM10T65
IGBT
650V, 10A IGBT MOSFET

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.