

AiT Semiconductor Inc.

DESCRIPTION

The A4732 is a Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) double-pole double-throw (DPDT) Analog Switch featuring an On-Resistance of 4.5 ohm at V_{CC} =3V and a Low On Capacitance 3.7pf Typical.

www.ait-ic.com

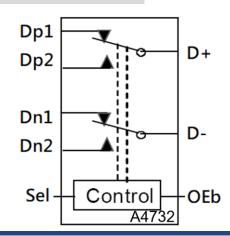
The A4732 is compatible with the requirements of USB2.0 and the wide bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to channel crosstalk also minimizes interference. Break-before-make function for both parts eliminate signal disruption during switching from preventing both switches being enabled simultaneously.

The A4732 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC} =0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

The A4732 is available in TQFN10(1.8x1.4) and MSOP10 packages.

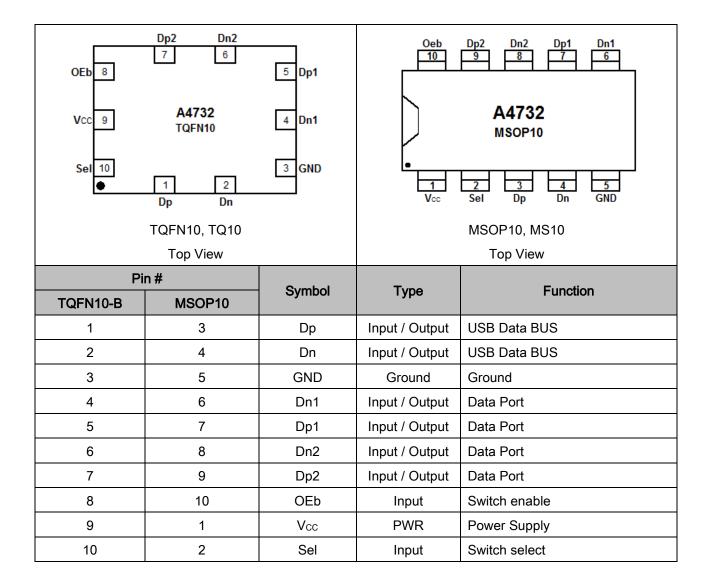
FEATURES

- Wide Power Supply Range: 2.3V to 5V
- Low On Capacitance 3.7pF Typical
- Low On Resistance 4.5 Ω (typ.) At 3V V_{DD} when V_{SW}=0.4V
- High Bandwidth (-3db): >720MHz without CL and >550MHz with CL=5pF
- Low Power Consumption: 1uA Maximum
- ESD: pass 8KV HBM test
- Over voltage tolerance (OVT) on all USB ports up to 5.25V without external components
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Operation Temperature Range: -40°C to 85°C


APPLICATION

- Cell phone
- PDAs
- Digital camera
- Notebook
- LCD Monitor
- TV
- SET-TOP BOX

ORDERING INFORMATION


Package Type	Part Number			
TQFN10	TQ10	A4732TQ10R		
SPQ:3,000pcs/Reel		A4732TQ10VR		
MSOP10	MS10	A4732MS10R		
SPQ:3,000pcs/Reel	101010	A4732MS10VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				

TYPICAL APPLICATION

PIN DESCRIPTION

FUNCTION TABLE

OEb	Sel	Function
1	Х	Disconnect
0	0	Dp, Dn=Dp1, Dn1
0	1	Dp, Dn=Dp2, Dn2

ABSOLUTE MAXIMUM RATINGS

Vcc, DC Supply Voltage	-0.5V ~ 5.5V
Dpn/Dnn/Dp/Dn, DC Switch Voltage	-0.5V ~ V _{CC} + 0.3V
V _{OEb} / V _{Sel} , DC Input Voltage	-0.5V ~ V _{CC} V
I(Dpn/Dnn/Dp/Dn), Continuous Current	-50mA~ +50mA
IPEAK(Dpn/Dnn/Dp/Dn), Peak Current ^{NOTE1}	-100mA~ +100mA
T _A , Operating Temperature Range	-40°C~ +85°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE1: Pulsed at 1ms, 50% duty circle

ELECTRICAL CHARACTERISTICS

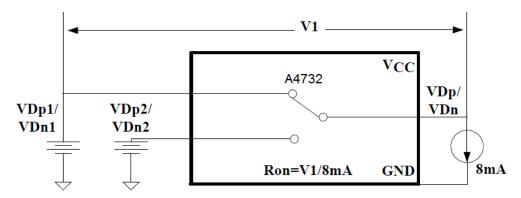
Parameter	Symbol	Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Analog Switch						
Analog Signal Range	VPn/VNn/Vp/Vn		0		Vcc	V
On-Resistance ^{NOTE3}	Ron	V _{CC} =3V,V _{SW} =0.4V,I _{ON} =-8mA		4.5		Ω
On-Resistance Match Between Channels ^{NOTE4}	△Ron	Vcc= 3V,Vsw=0.4V,Ion=-8mA		0.1		Ω
Current						
Source Off Leakage Current	IPn / Nn (OFF)	V _{CC} =3.6V,V _P /Vn = 3.6V/0.3V V _{Pn} / V _{Nn} =0.3V/3.6V	-1		1	uA
Channel on Leakage Current	IPn / Nn (ON)	V _{CC} =3.6V, V _p /V _n =3.6V/0.3V V _{Pn} / V _{Nn} =3.6V/0.3V	-1		1	uA
POWER OFF Leakage Current	IOFF	$V_{CC} = 0V, V_{SW} = 0V$ to 3.6V, Vcontrol=0 or V_{CC}	-1		1	uA
Quiescent Supply Current	lcc	V _{CC} =3V, Vcontrol=0 or V _{CC} , I _{OUT} =0			1	uA
Increase in I_{CC} Current Per Control Voltage and V_{CC}	Ісст	V _{cc} =3.6V, Vcontrol=2.6V			4	uA
Input Leakage Current	I _{OEb} / _{Sel}	V _{OEb} / _{Sel} 0 or V _{CC}			1	uA
Digital I/O						
Input Voltage High	VIH	V _{CC} = 3.0-3.6V	1.6			V
Input Voltage Low	VIL	V _{CC} = 3.0-3.6V			0.5	V

NOTE2: Typical characteristics are at +25°C

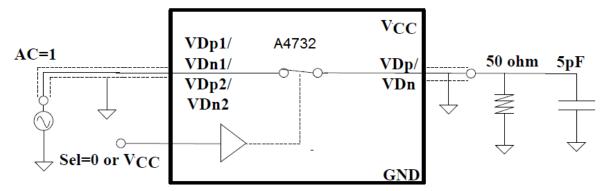
NOTE3: Measured by the voltage drop between Dpn/Dnn and Dp/Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (Dpn/Dnn and Dp/Dn ports). NOTE4: $\triangle R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$, between Dp and Dn.

AiT Semiconductor Inc.

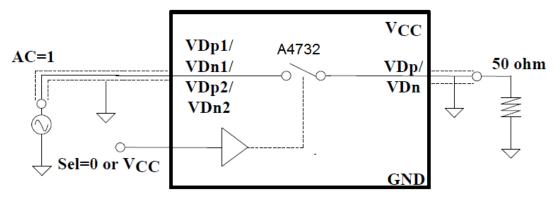
Parameter	Symbol	Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
DRIVER CHARACTERISTICS						
Turn-On Time	ton	V_{CC} =3.3V, R _L =50 Ω , C _L =5pF, V _{SW} =0.8V		10	30	ns
Turn-Off Time	toff	V_{CC} =3.3V, RL=50 Ω , CL=5pF, V _{SW} =0.8V		20	25	ns
Break-Before-	4	V_{CC} =3.3V, RL=50 Ω , CL=5pF,	2.0	3	6.5	ns
Make Time	tввм	V _{SW1,2} =0.8V				
Propagation Delay	t _{PD}	V_{CC} =3.3V, R _L =50 Ω , C _L =5pF		0.2		ns
CAPACITANCE						
Control Capacitance	Cin	V _{CC} =0V		1.5		pF
ON Capacitance	Con	V _{CC} = 3.3V,OE=0V,f=240MHz		3.7		pF
OFF Capacitance	COFF	V _{CC} = 3.3V,OE=3.3V,f=240MHz		2.0		pF
APPLICATION CHARACTERISTICS						
3dB Bandwidth	f _{3dB}	V _{CC} = 3.3V,R _L =50Ω,C _L =0pF		720		MHz
		V _{CC} = 3.3V,R _L =50Ω,C _L =5pF		550		MHz
Off IsolationNOTE5	Viso	V _{CC} = 3.3V,R _L =50Ω,f=250MHz		-30		dB
Channel crosstalk	XTALK	V _{CC} = 3.3V,R∟=50Ω,f=250MHz		-35		dB


NOTE2: Typical characteristics are at 25°C

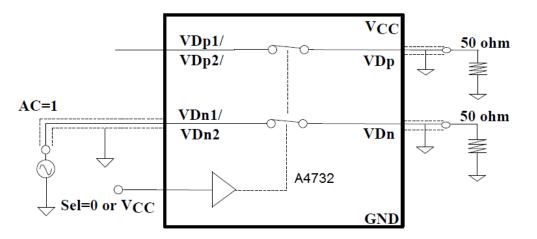
NOTE5: Off Channel Isolation = $20log_{10} [(V_{P1/P2})/V_P]$ or $20log_{10} [(V_{N1N2})/V_N]$



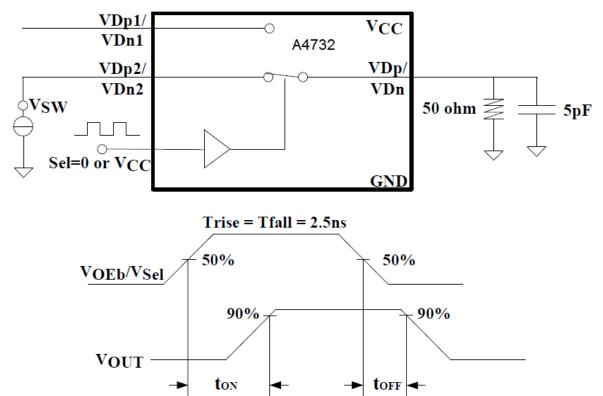
TEST CIRCUIT


1. Test Circuit for On Resister

2. Test Circuit for Bandwidth

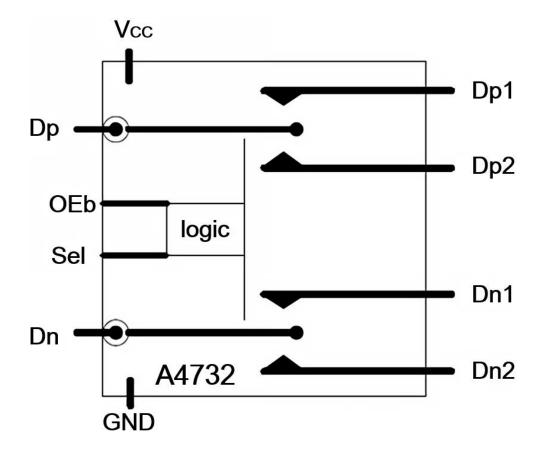


3. Test Circuit for Off Isolation



4. Test Circuit for Crosstalk

5. Test Circuit for Switch Times



- VDp1/ VCC -0 VDn1 A4732 VSW VDp/ VDp2/ \cap VDn2 VDn 'SW 50 ohm 🗲 5pF \cap Sel=0 or VCC GND Trise = Tfall = 2.5ns VSel 50% 90% 90% Vout tBBM 7. Test Circuit for Propagation Delay, tPD VCC VDp1/ A4732 Trise = Tfall = 2.5ns VDn1/ VDp/ VDn VDp2/ 50 ohm 🗄 5pF VDn2 0-Sel=0 or VCC GND 400mV 50% 50% VIN 0V50% 50% VOUT **t**pdl t pdh
- 6. Test Circuit for Break-Before-Make Time Delay, tBBM

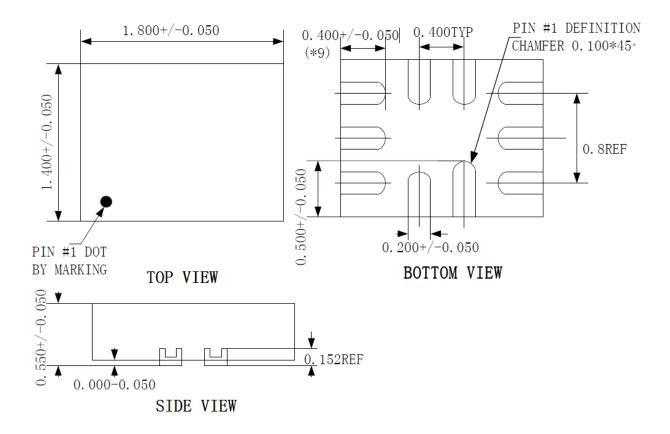
BLOCK DIAGRAM

DETAILED INFORMATION

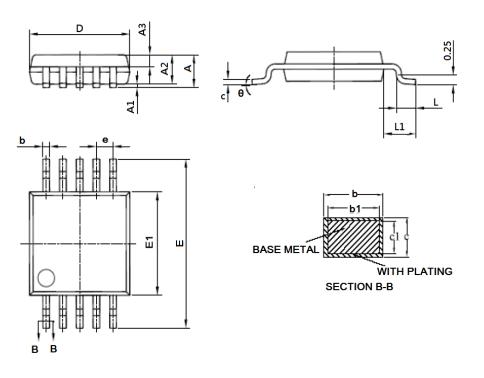
Meeting USB 2.0 VBUS Short Requirements

(1) Power-Off Protection

For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The A4732 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (Dp, Dn).


(2) Power-On Protection

The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V_{CC} rail during the over-voltage event so current remains within the safe operating range.


PACKAGE INFORMATION

Dimension in TQFN10 (Unit: mm)

Dimension in MSOP10 (Unit: mm)

Symbol	Min	Max		
А	-	1.100		
A1	0.050	0.150		
A2	0.750	0.950		
A3	0.300	0.400		
b	0.190	0.280		
b1	0.180	0.230		
с	0.150	0.200		
c1	0.140	0.160		
D	2.900	3.100		
E	4.700	5.100		
E1	2.900	3.100		
е	0.500(BSC)			
L	0.400	0.700		
L1	0.95(BSC)			
θ	0°	8°		
L/P(Mil)	71 x 96			

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.