AiT Semiconductor Inc.

DESCRIPTION

The AO393 consist of two independent precision voltage comparators with a typical offset voltage of 1.0mV and high gain. They are specifically designed to operate from a single power supply over wide range of voltages.

Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

The AO393 is available in SOP8 and DIP8 packages.

ORDERING INFORMATION

Package Type	Part Number			
SOP8	MO	AO393M8R		
SPQ: 4,000pcs/Reel	IVIO	AO393M8VR		
DIP8	D 0	AO393P8U		
SPQ: 20pcs/Tube	Põ	AO393P8VU		
	V: Halogen free Package			
Note	R: Tape & Reel			
	U: Tube			
AiT provides all RoHS products				

FEATURES

- Wide Supply Voltage Range
- Single Supply: 2.0V to 36V
- Dual Supplies: ±1.0V to ±18V
- Low Supply Current Drain: 0.6mA
- Low Input Bias Current: 25nA (Typical)
- Low Input Offset Current: ±5.0nA (Typical)
- Low Input Offset Voltage: 1.0mV (Typical)
- Input Common Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equals to the Power Supply Voltage
- Low Output Saturation Voltage: 200mV at 4mA
- Open Collector Output
- Available in SOP8 and DIP8 packages

APPLICATION

- Vacuum Robot
- Single Phase UPS
- Server PSU
- Cordless Power Tool
- Wireless Infrastructure
- Building Automation
- Factory Automation & Control
- Motor Dives
- Infotainment & Cluster
- Battery Charger
- DC-DC Module
- PC Motherboard
- Communication Equipment

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Vcc, Power Supply Voltage	±20V or 40V
VI(DIFF), Differential input voltage	40V
V _I , Input Voltage	-0.3V ~ 40V
T _{opr} , Operating Temperature Range	-25°C ~ 125°C
T _{STG} , Storage Temperature Range	-65°C ~ 150°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 V_{DC}$ at 25°C).

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc		2	-	36	V
Operating Temperature Range	T _A		-40	-	85	°C

ELECTRICAL CHARACTERISTICS

Limits in standard typeface are for $T_A=25^{\circ}$ C, bold typeface applies over $T_A=-40^{\circ}$ C to 85° C^{NOTE2}, V_{CC}=5V, GND=0V, unless otherwise specified.

Parameter	Conditions		Min	Тур	Max	Unit
	V_0 =1.4V, R _S =0 Ω , V _{CC} =5V to 30V		-	1.0	3.0	mV
Input Offset Voltage			-	-	5	
	I _{IN} + or I _{IN} - with output in Linear		-	25	250	
Input Blas Current	Range, V _{CM} =0V		-	-	400	nA
		-	5.0	50		
Input Offset Current	I_{IN} + - I_{IN} -, V_{CM} =0V	+ - I _{IN} -, V _{CM} =0V		-	200	nA
Input Common-Mode Voltage Range ^{NOTE3}	V _{CC} = 30V		0	-	Vcc-1.5	V
Supply Current	R _L =∞ V _{CC} = 5		-	0.6	1.0	mA
		$V_{CC} = 5V$	-	-	2	
			-	0.7	1.7	
		$V_{CC} = 30V$	-	-	3	
Voltage Gain	V _{CC} =15V, R _L ≥15kΩ, V _O =1V to 11V		50	200	-	V/mV
Large Signal Response Time	V_{IN} =TTL Logic Swing, V_{REF} =1.4V, V_{RL} =5V, R_L =5.1k		-	200	-	ns
Response Time	V _{RL} =5V, R _L =5.1k		-	1.3	-	μs
Output Sink Current	V _{IN} =1V, V _{IN} +=0, V _O =1.5V		6.0	16	-	mA
Output Leakage Current	V _{IN} =0V, V _{IN} +=0, V _O =1.5V		-	0.1	-	nA
	V _{IN} =0V, V _{IN} +=0, V _O =30V		-	-	1	μA
Saturation Voltage	V _{IN} =1V, V _{IN} +=0, I _{SINK} ≤4mA		-	200	400	mV
				-	500	
Thermal Resistance	DIP8		_	93	-	°C///
(Junction to Case)	SOP8		-	138	-	C/W

NOTE2: These specifications are limited to $-40^{\circ}C \le T_A \le 85^{\circ}C$. Limits over temperature are guaranteed by design, but not tested in production.

NOTE3: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25° C). The upper end of the common-mode voltage range is V_{CC}-1.5V (at 25° C), but either or both inputs can go to +36V without damages, independent of the magnitude of the V_{CC}.

TYPICAL PERFORMANCE CHARACTERISTICS

1. Supply Voltage vs. Supply Current

3. Output Sink Current vs. Saturation Voltage

2. Supply Voltage vs. Input Bias Current

4. Response Time for 5mV Input Overdrive Negative Transition

TYPICAL APPLICATIONS

1. Basic Comparator

2. Driving CMOS

3. One Shot Multi-vibrator

BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Millimeters			
Symbol	Min.	Max.		
А	1.350	1.750		
A1	0.100	0.250		
A2	1.350	1.550		
b	0.330	0.510		
С	0.170	0.250		
D	4.700	5.100		
E	3.800	4.000		
E1	5.800	6.200		
е	1.270 BSC			
L	0.400	1.270		
θ	0°	8°		

Dimension in DIP8 (Unit: mm)

Sumbol	Millim	neters	Inches		
Symbol	Min.	Max.	Min.	Max.	
А	3.710	4.310	0.146	0.170	
A1	0.510	-	0.020	-	
A2	3.200	3.600	0.126	0.142	
В	0.380	0.570	0.015	0.022	
B1	1.524	BSC	0.060 BSC		
С	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.600	0.244	0.260	
E1	7.320	7.920	0.288	0.312	
е	2.540 BSC		0.100	BSC	
L	3.000	3.600	0.118	0.142	
E2	8.400	9.000	0.331	0.354	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.