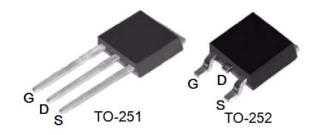
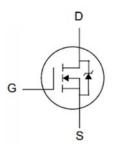
DESCRIPTION

The AM04N80 is available in TO-251, TO-252 • Proprietary New Planar Technology Package

APPLICATION

- CRT
- TV/Monitor


FEATURE


- $R_{DS(ON),typ.}$ =3.7 Ω @ V_{GS} =10V
- · Low Gate Charge Minimize Switching Loss
- Fast Recovery Body Diode

ORDERING INFORMATION

Package Type	Part Number		
TO-251	TS3	AM04N80TS3U	
SPQ: 75pcs /Tube	133	AM04N80TS3VU	
TO-252	D	AM04N80DR	
SPQ: 2,500pcs/Reel	D	AM04N80DVR	
	V: Halogen free Package R: Tape & Reel		
Note			
	U: Tub	U: Tube	
AiT provides all RoHS products			

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage (1)	V _{DSS}	800	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Gate-to-Source Voltage	V _{GSS}	±30	V	
Continuous Drain Current	I _D	4		
Continuous Drain Current @ Tc=100°C	I _D @ Tc =100°C	Fig 3.	Α	
Pulsed Drain Current at VGS=10V (2)	I _{DM}	Fig 6.		
Single Pulse Avalanche Energy	Eas	650	mJ	
Peak Diode Recovery dv/dt (3)	dv/dt	5.0	V/ns	
Power Dissipation	Б	85	W	
Derating Factor above 25°C	P _D	0.68	W/°C	
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10 seconds, Package Body for 10 seconds	T _L T _{PAK}	300 260	Ç	
Operating and Storage Temperature Range	TJ& TSTG	-55 to 150		
THERMAL RESISTANCE				
Thermal Resistance, Junction-to-Case	Rejc	1.47	°C/W	
Thermal Resistance, Junction-to-Ambient	R _{θJA}	75		

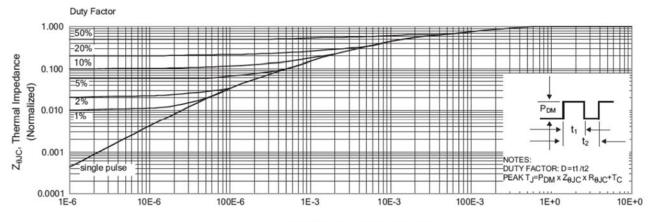
 $^{^{(1)}}$ T_A=+25°C to +150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁽²⁾ Repetitive rating; pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS

T_A = 25°C, unless otherwise specified.


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	800			V	
Drain-to-Source Leakage Current	IDSS	V _{DS} =800V, V _{GS} =0V			1		
		V _{DS} =640V, V _{GS} =0V,			100	uA	
		T _A =125°C			100		
		V _{GS} =+30V, V _{DS} =0V			+100	- A	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS							
Static Drain-to-Source On-Resistance (4)	R _{DS(ON)}	V _{GS} =10V, I _D =2.0A		3.7	4.8	Ω	
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250uA	2.0		4.0	V	
Forward Transconductance (4)	gfs	V _{DS} =15V, I _D =4.0A		5.5		S	
Dynamic CHARACTERISTICS							
Input Capacitance	Ciss	V _{GS} =0V,		490			
Reverse Transfer Capacitance	C _{rss}	V_{DS} =25 V , f=1.0MH $_Z$		25		pF	
Output Capacitance	Coss			50			
Total Gate Charge	Qg	\/ =400\/		16		nC	
Gate-to-Source Charge	Q _{gs}	V _{DD} =400V,		3.0			
Gate-to-Drain (Miller) Charge	Q_{gd}	I _D =4A, V _{GS} =0 to 10V		6.0			
Resistive Switching CHARACTERISTICS							
Turn-on Delay Time	t _{d(ON)}	V _{DD} =400V,		10			
Rise Time	t _{rise}	I _D =4A,		10		~C	
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} =10V		30		nS	
Fall Time	t _{fall}	R _G =12Ω		15			
Source-Drain Diode CHARACTERISTICS							
Continuous Source Current (4)	I _{SD}	Integral PN-diode			4.0	Λ	
Pulsed Source Current (4)	I _{SM}	in MOSFET			16	Α	
Diode Forward Voltage	V _{SD}	I _S =4.0A, V _{GS} =0V			1.5	V	
Reverse Recovery Time	t _{rr}	V _{GS} =0V, I _F =4.0A,		235		ns	
Reverse Recovery Charge	Qrr	d _{iF} /d _t =100A/μs		446		nC	

⁽³⁾ I_{SD} = 4A di/dt < 100 A/µs, V_{DD} < BV_{DSS}, T_{J} =+150°C.

⁽⁴⁾ Pulse width≤380µs; duty cycle≤2%.

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Maximum Effective Thermal Impedance, Junction-to-Case

t_p, Rectangular Pulse Duration (s)

Fig 2. Maximum Power Dissipation vs Case Temperature

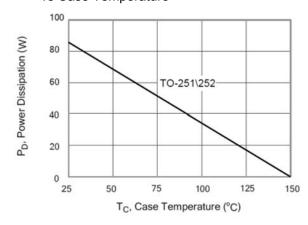


Fig 4. Typical Output Characteristics

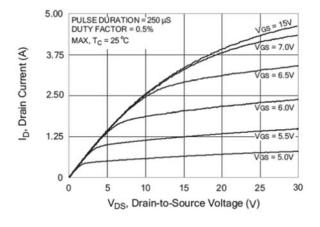


Fig 3. Maximum Continuous Drain Current vs Case Temperature

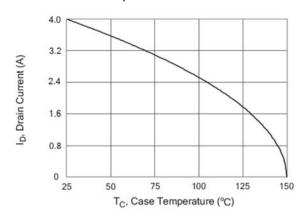


Fig 5. Typical Drain-to-Source ON Resistance Vs Gate Voltage and Drain Current

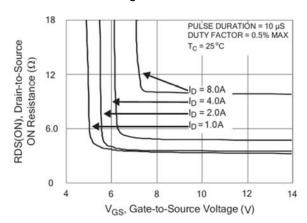


Fig 6. Maximum Peak Current Capability

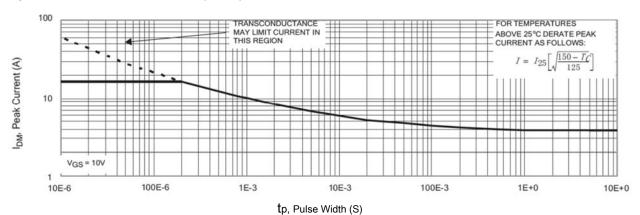


Fig 7. Typical Transfer Characteristics

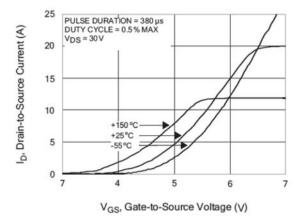


Fig 9. Typical Drain-to-Source ON Resistance vs Drain Current

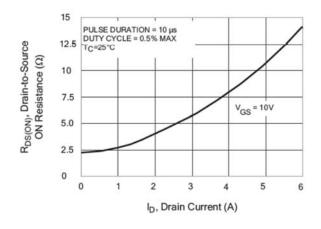


Fig 8. Unclamped Inductive Switching Capability

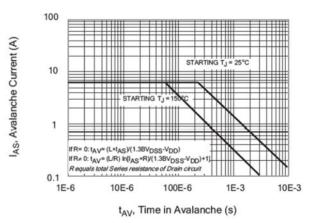


Fig 10. Typical Drain-to-Source ON Resistance vs Junction Temperature

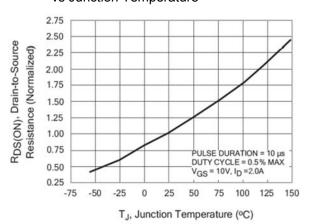


Fig11. Typical Breakdown Voltage



Fig 13. Maximum Safe Operating Area

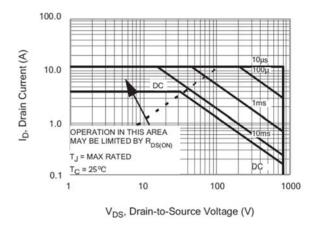


Fig 15. Typical Gate Charge vs Gate-to-Source Voltage

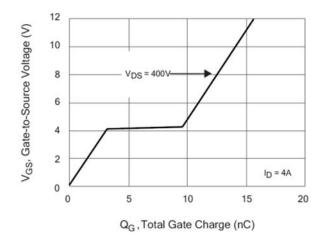


Fig 12. Typical Threshold Voltage vs Junction Temperature

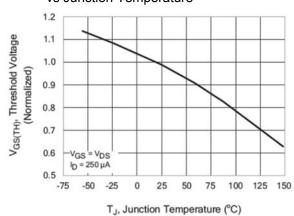


Fig 14. Typical Capacitance vs Drain-to-Source Voltage

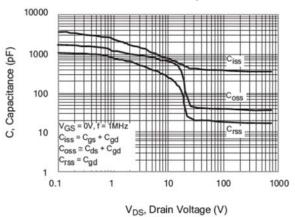
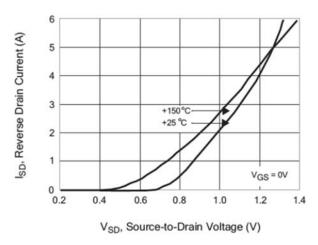



Fig 16. Typical Body Diode Transfer Characteristics

TEST CIRCUITS AND WAVEFORMS

Fig 17. Peak Diode Recovery dv/dt Test Circuit

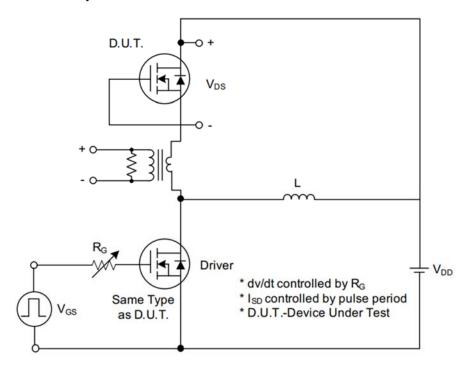


Fig 18. Peak Diode Recovery dv/dt Waveforms

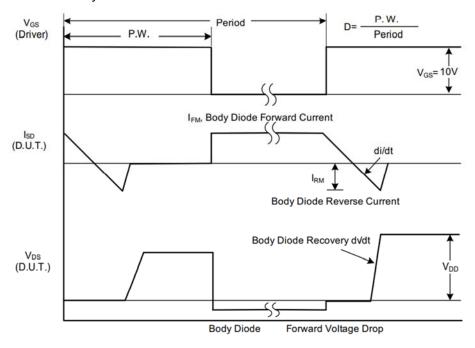


Fig 19. Switching Test Circuit

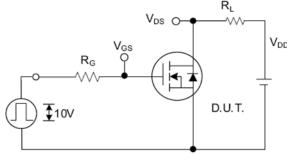


Fig 21. Gate Charge Test Circuit

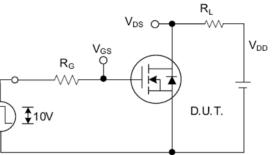
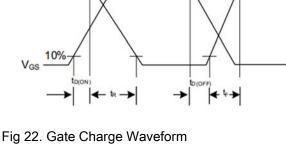
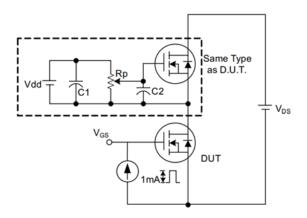
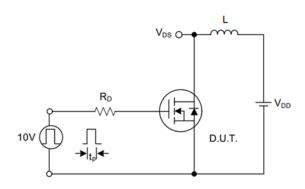
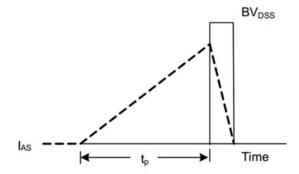




Fig 20. Switching Waveforms

90%

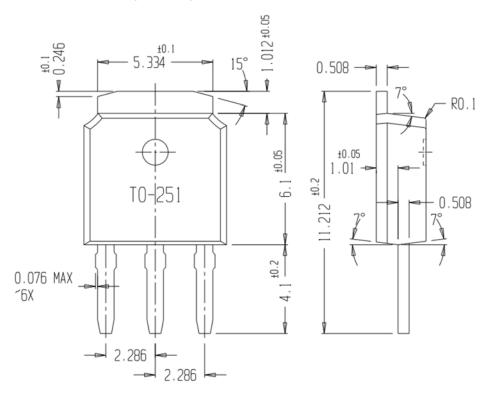
VDS

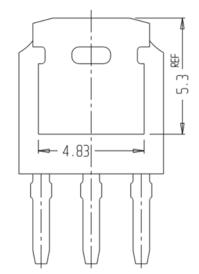


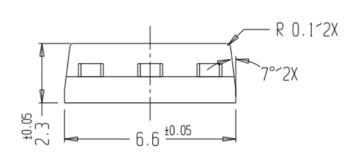


 Q_G 10V VG Charge

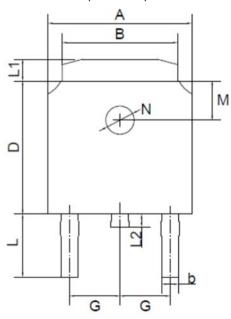
Fig 23. Unclamped Inductive Switching Test Circuit

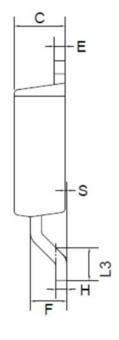

Fig 24. Unclamped Inductive Switching Waveforms

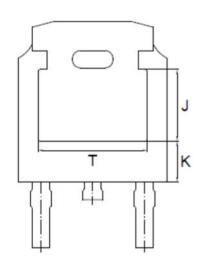




PACKAGE INFORMATION


Dimension in TO-251 (Unit: mm)





Dimension in TO-252 (Unit: mm)

Symbol	Min.	Max.	
Α	6.3	6.7	
В	5.1	5.5	
b	0.3	0.8	
С	2.1	2.5	
D	5.9	6.3	
E	0.4	0.6	
F	1.3	1.8	
G	2.29TYPICAL		
Н	0.45	0.55	
L	2.7	3.1	
L1	0.8	1.2	
L2	0.6	1.0	
L3	1.40	1.75	
S	0.0	0.1	
М	1.8 TYPICAL		
N	1.3 TYPICAL		
J	3.16 ref.		
K	1.80 ref.		
Т	4.83 ref.		

AM04N80 MOSFET 800V, 4A N-CHANNEL

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.