AiT Semiconductor Inc.

DESCRIPTION

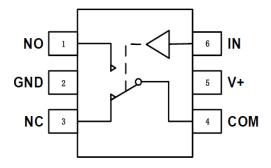
The A4759 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.8V to 5.5V.

The A4759 can handle both analog and digital signals and offers a low on-resistance (4.5Ω TYP) and excellent ON-state resistance matching, with the break-before-make feature to prevent signal distortion during the transferring of a signal from one channel to another. The A4759 has excellent total harmonic distortion (THD) performance and consumes very low power, these features make A4759 suitable for portable audio applications.

The A4759 is available in SOT-26 and SC70-6 packages.

ORDERING INFORMATION

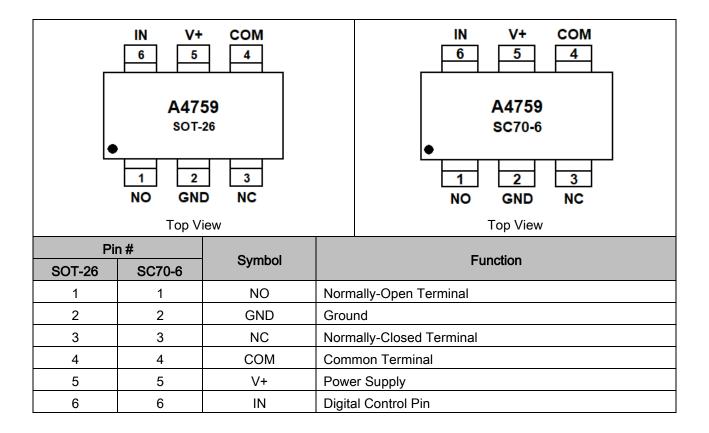
Package Type	Part Number			
SOT-26	50	A4759E6R		
SPQ: 3,000pcs/Reel	E6	A4759E6VR		
SC70-6		A4759C6R		
SPQ: 3,000pcs/Reel	C6	A4759C6VR		
Note	V: Halogen free Package R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Supply Range: +1.8V to +5.5V
- Low ON-State Resistance, 4.5Ω(TYP)
- High Bandwidth: 300MHz
- High Speed, Typically 30ns
- Break-Before-Make Switching
- Rail-to-Rail Operation
- TTL/CMOS Compatible
- Extended Industrial Temperature Range: -40°C to +125°C
- Available in SOT-26 and SC70-6 packages

APPLICATION

- Mobile Phones
- Portable Instrumentation
- Consumer and Computing
- Battery-Operated Equipment
- Signal Gating, Chopping, Modulation or Demodulation (Modem)


TYPICAL APPLICATION

NOTE: NO, NC and COM terminals may be an input or output

PIN DESCRIPTION

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

ABSOLUTE MAXIMUM RATINGS

V+, IN to GND	-0.3V ~ 6.0V		
Analog, Digital Voltage Range ^{NOTE1}	-0.3 ~ (V+) + 0.3V		
Continuous Current NO, NC, or COM	±300mA		
Peak Current NO, NC, or COM	±500mA		
Storage Temperature	-65°C ~ +150°C		
Operating Temperature	-40°C ~ +125°C		
Junction Temperature	150°C		
Deskage Thermal Resistance @ T. = 125°C	SOT-26	200°C/W	
Package Thermal Resistance @ T _A = +25°C	SC70-6	250°C/W	
Lead Temperature (Soldering, 10s)	260°C		
	НВМ	1000V	
ESD Susceptibility	ММ	100V	

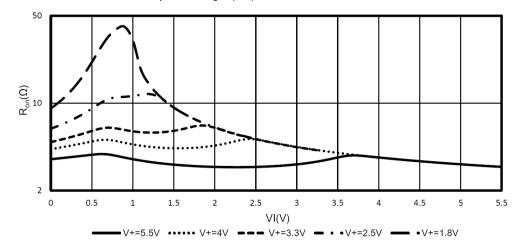
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less.

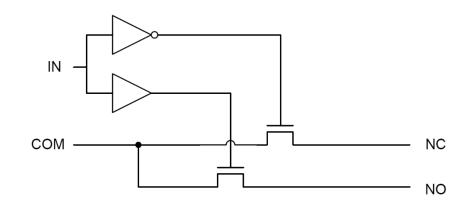
ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	V+	TA	Min	Тур	Max	Unit
Analog Switch								
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			-40°C to 125°C	0	-	V+	V
		V_{NO} or $V_{NC} = V+/2$,	5V	+25°C	-	4.5	8	Ω
On-Resistance	Ron	$I_{COM} = -10 \text{mA}$, Switch ON,	50	-40°C to 125°C	-	-	8.5	
OII-Resistance	NON	See Figure 1	3.3V	+25°C	-	7	10	Ω
		See Figure 1	3.3V	-40°C to 125°C	-	-	10.5	Ω
On Desistance		$\lambda = \lambda + 0$	E\/	+25°C	-	0.15	0.3	Ω
On-Resistance	Р	$V_{NO} \text{ or } V_{NC} = V + /2,$	5V	-40°C to 125°C	-	-	0.4	
Match Between Channels	R _{ON}	I _{COM} = -10mA, Switch ON, See Figure 1	3.3V	+25°C	-	0.15	0.3	Ω
Channels			3.3V	-40°C to 125°C	-	-	0.4	
	Rflat(on)	$0 \le (V_{NO} \text{ or } V_{NC}) \le V+/2,$ I _{COM} = -10mA, Switch ON, See Figure 1	51/	+25°C	-	2	3	Ω
On-Resistance			5V	-40°C to 125°C	-	-	3.3	
Flatness			3.3V	+25°C	-	3	4	
				-40°C to 125°C	-	-	4.3	Ω
NC,NO OFF Leakage Current	I _{NC(OFF)} , Ino(off)	V_{NO} or V_{NC} = 0.3V, V+/2 V_{COM} = V+/2, 0.3V See Figure 2	1.8 to 5.5V	-40°C to 125°C	-	-	1	μA
NC,NO,COM ON Leakage Current	Inc(on), Ino(on), Icom(on)	V _{NO} or V _{NC} = 0.3V, Open V _{COM} =Open, 0.3V See Figure 2	1.8 to 5.5V	-40°C to 125°C	-	-	1	μA
Digital Control Input	S ^{NOTE2}					1		
Input High Voltage	V _{INH}		5V		1.5	-	-	v
			3.3V		1.3	-	-	v
Input Low Voltage	VINL		5V -40°C to 125°C	-	-	0.6	v	
input Low Voltage			3.3V	+0 0 10 120 0	-	-	0.5	v
Input Leakage Current	lin	V _{IN} = V _{IO} or 0	1.8 to 5.5V	-40°C to 125°C	-	-	1	μA

V+ = 5.0 V, T_A = -40°C to 125°C, unless otherwise noted

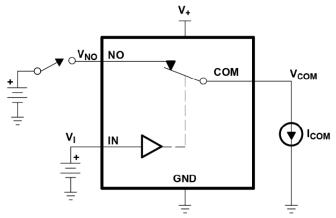

Parameter	Symbol	Conditions		V+	TA	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS									
T 0 T		$V_{COM} = V_{+}, R_{L} = 300\Omega,$		5V	. 0.5%0	-	30	-	
Turn-On Time	ton	C∟ = 35pF, S	ee Figure 5	3.3V	+25°C	-	40	-	ns
Turn-Off Time	toff	V _{COM} = V+, R	_L = 300Ω,	5V	+25℃	-	25	-	ne
Turn-On Time	LOFF	C_L = 35pF, See Figure 5		3.3V	+25 C	-	30	-	ns
Break-Before-Make		V _{NO1} =V _{NC1} =V _N	,	5V		-	5	-	
Time Delay	tввм	R∟ = 300Ω, C See Figure 6	i∟ = 35pF,	3.3V	+25℃	-	8	-	ns
	0	R _L = 50Ω,	f = 10MHz		+25°C	-	-52	-	dB
Off Isolation	OISO	Switch OFF, See Figure 8	f = 1MHz		+25°C	-	-71	-	dB
-3dB Bandwidth	BW	Switch ON, R∟ = 50Ω See Figure 7			+25℃	-	300	-	MHz
NC,NO OFF Capacitance	Cnc(off), Cno(off)	V_{NC} or V_{NO} =V+/2 or GND, Switch OFF, See Figure 4			+25°C	-	5	-	pF
NC,NO,COM ON Capacitance	Cnc(on), Cno(on), Ccom(on)	V _{NC} or V _{NO} =V+/2 or GND, Switch ON, See Figure 4			+25℃	-	15	-	pF
POWER REQUIREMENTS									
Power Supply Range	V+				-40°C to 125°C	1.8	-	5.5	V
Power Supply Current	+	V _{IN} = GND or V+		5.5V	-40°C to 125°C	-	-	1	μA

NOTE2: All unused digital inputs of the device must be held at VIO or GND to ensure proper device operation.



TYPICAL PERFORMANCE CHARACTERISTICS

- 1. BANDWIDTH 2. BANDWIDTH 3 3 0 0 Gain(dB) ^ب Gain(dB) -3 -6 -6 -9 -9 10 100 1,000 1 1 10 100 1,000 Frequency(MHz) V+=3V Frequency(MHz) V+=5V
- 3. Typical Ron as a Function of Input Voltage (VI) for VI = 0 to V+


BLOCK DIAGRAM

Parameter Measurement Information

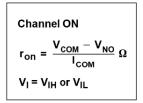


Figure 2. OFF-State Leakage Current (ICOM(OFF), INO(OFF))

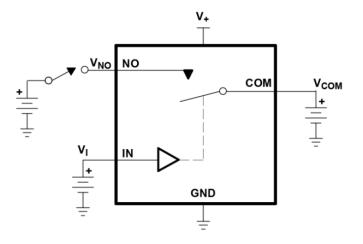
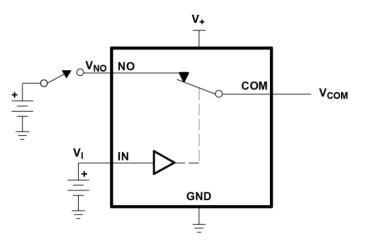
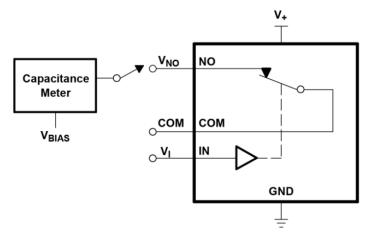
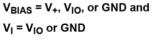



Figure 3. ON-State Leakage Current (ICOM(ON), INO(ON))




OFF-State Leakage Current Channel OFF $V_I = V_{IH}$ or V_{IL}

ON-State Leakage Current Channel ON $V_I = V_{IH}$ or V_{IL}

Figure 4. Capacitance (CI, CCOM(OFF), CCOM(ON), CNO(OFF), CNO(ON))

Capacitance is measured at NO, COM, and IN inputs during ON and OFF conditions.

 C_L

35 pF

35 pF

50%

◄

90%

V_{COM}

V+

V+

toff

90%

· v_{io}

0

TEST

ton

toff

ton

Logic

Input

(V_{NO})

(V_I)

 R_L

50 Ω

50 Ω

50%

Figure 5. Turn-On (ton) and Turn-Off Time (toFF)

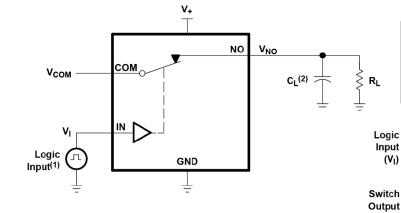
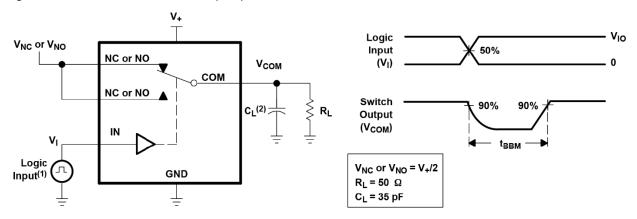



Figure 6. Break-Before-Make Time (t_{BBM})

Figure 7. Bandwidth (BW)

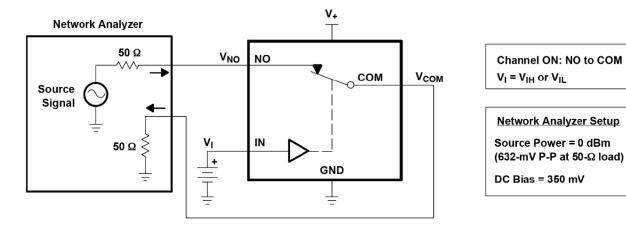


Figure 8. OFF Isolation (OISO)

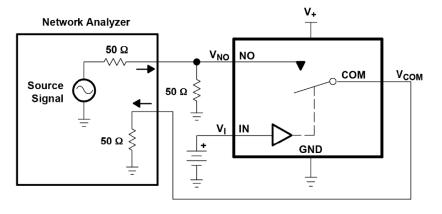
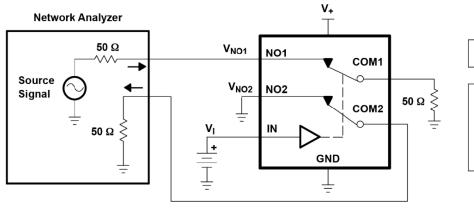



Figure 9. Crosstalk (XTALK)

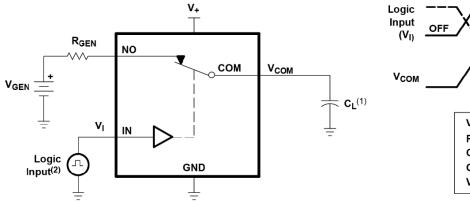
Channel ON: NO to COM

Channel OFF: NO to COM

Network Analyzer Setup Source Power = 0 dBm

(632-mV P-P at 50-Ω load)

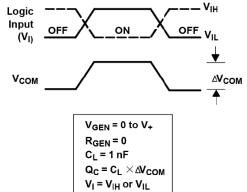
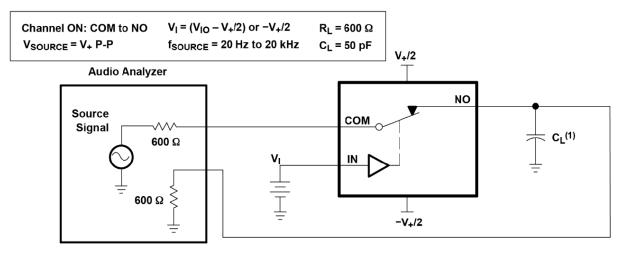
DC Bias = 350 mV

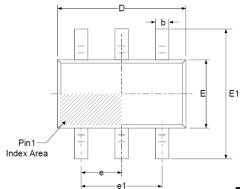

 $V_{I} = V_{IO}$ or GND

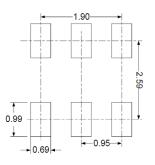
Network Analyzer Setup

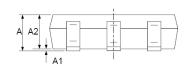
Source Power = 0 dBm (632 mV P-P at 50-Ω load) DC Bias = 350 mV

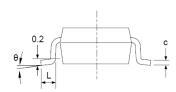
Figure 10. Charge Injection (Q_C)

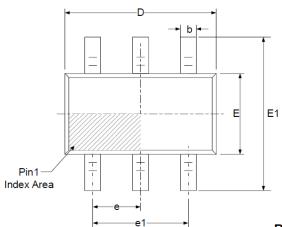

Figure11. Total Harmonic Distortion (THD)

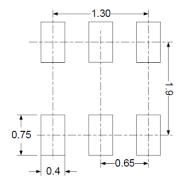



PACKAGE INFORMATION

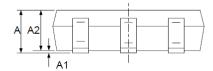

Dimension in SOT-26 (Unit: mm)

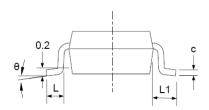
RECOMMENDED LAND PATTERN (Unit: mm)





Symbol	Millim	ieters	Inches		
	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	




Dimension in SC70-6 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Millim	ieters	Inches		
Symbol	Min	Max	Min	Max	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
с	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 BSC		0.026 BSC		
e1	1.300 BSC		0.051 BSC		
L	0.260	0.460	0.010	0.018	
L1	0.525		0.0)21	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.