

DESCRIPTION

This Dual Schmitt-trigger Inverter AL2G14 is designed for 1.65V to 5.5V Vcc operation.

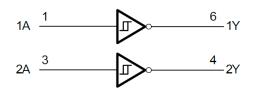
The AL2G14 device contains two inverter and performs the Boolean function $Y=\overline{A}$ The device functions as two independent inverters with Schmitt-trigger inputs, so the device has different input threshold levels for positive-going (V_{T+}) and negative going (V_{T-}) signals to provide hysteresis(ΔV_T) which makes the device tolerant to slow or noisy input signals.

This AL2G14 is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the AL2G14 when it is powered down.

The AL2G14 is available in SOT-26 and SC70-6 packages.

ORDERING INFORMATION

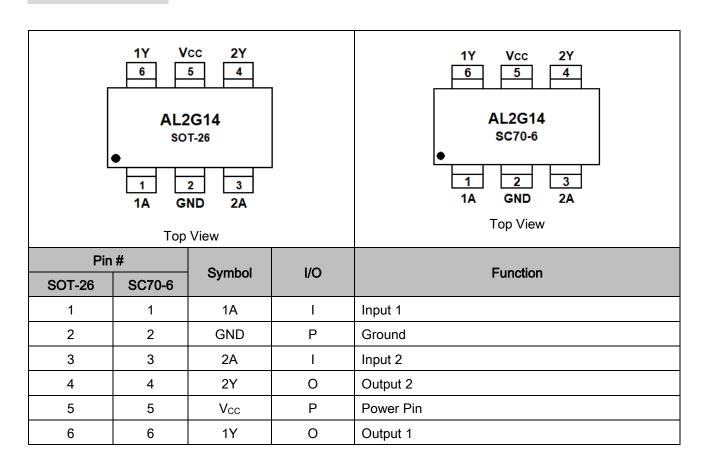
Package Type	Part Number			
SOT-26	F6	AL2G14E6R		
SPQ: 3,000pcs/Reel	EO	AL2G14E6VR		
SC70-6	06	AL2G14C6R		
SPQ: 3,000pcs/Reel	C6	AL2G14C6VR		
Note	V: Halogen free Package R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Supports 5V Vcc Operation
- Inputs Accept Voltages from 1.65V to 5.5V
- Low Power Consumption:1µA (Max)
- ±24mA High Output Drive at V_{CC}=3.0V
- Input Accept Voltage to 5.5V
- I_{off} Supports Partial-Power-Down Mode
- Operation Operating Temperature Range:
 -40°C to +125°C
- Available in SOT-26 and SC70-6 packages

APPLICATION

- Body Control Modules
- Engine Control Modules
- Arcade, Casino, and Gambling Machines
- Servers and High-Performance Computing
- EPOS, ECR, and Cash Drawer
- Routers
- Desktop PC
- AC Receiver and Home Theaters
- Blu-ray Players and Home Theaters
- Digital Video Cameras (DVC)
- Mobile Phones
- Personal Navigation Device (GPS)
- Portable Media Player


FUNCTIONAL BLOCK DIAGRAM

REV1.0 - NOV 2021 RELEASED -

PIN DESCRIPTION

FUNCTION TABLE

Inputs	Output
Α	Y
Н	L
L	Н

Y=Ā

H=High Voltage Level

L=Low Voltage Level

REV1.0 - NOV 2021 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range, unless otherwise noted^{NOTE1}

over operating free-air temperature range, unless otherwise noted.						
Vcc, Supply Voltage Range	-0.5V ~ 6.5V					
Vı, Input Voltage Range ^{NOTE1}			-0.5V ~ 6.5V			
V _O , Voltage range applied to any output	in the high	-impedance or power-off stateNOTE1	-0.5V ~ 6.5V			
Vo, Voltage range applied to any output	in the high	or low state ^{NOTE1, 2}	-0.5V ~ V _{CC} +0.5V			
Ік, Input Clamp Current		V ₁ <0	-50mA			
Іок, Output Clamp Current	-50mA					
Io, Continuous Output Current	±50mA					
Continuous Current Through Vcc or GN	±100mA					
T _J , Junction Temperature	150°C					
T _{STG} , Storage Temperature	-65°C ~ 150°C					
ESD Ratings						
Human-body model (HBM)			±8000V			
V _(ESD) , Electrostatic Discharge	Machine model (MM)		±500V			

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

NOTE2: The value of V_{CC} is provided in the Recommended Operating Conditions table.

REV1.0 - NOV 2021 RELEASED - - 3 -

RECOMMENDED OPERATING CONDITIONS

 $T_A = +25$ °C, unless otherwise noted. NOTE3

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
0	V	Operating	1.65	ı	5.5	
Supply Voltage	Vcc	Data retention only	1.5	-	-	V
Input Voltage V _I			0	-	5.5	V
Output Voltage	Vo		0	-	Vcc	V
Operating Temperature	TA		-40	-	+125	°C

REV1.0 - NOV 2021 RELEASED - - 4 -

DC ELECTRICAL CHARACTERISTICS

 T_A = +25°C, unless otherwise noted. NOTE3

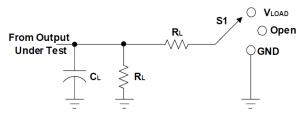
	Parameter	Conditions	Temp	Min	Тур	Max	Unit	
		V _{CC=} 1.65V		0.75	ı	1.05		
	Positive Going	V _{CC=} .3V		1.25	ı	1.55	V	
V_{T+}	Input Threshold	V _{CC} =3V	-40°C to +125°C	1.5	ı	2.1		
	Voltage	V _{CC=} 4.5V		2.3	ı	3.0		
		V _{CC} =5.5V		2.8	ı	3.4		
		V _{CC} =1.65V		0.3	ı	0.6		
	Negative Going	V _{CC} =2.3V		0.35	ı	0.65		
V_{T-}	Input Threshold	V _{CC} =3V	-40°C to +125°C	0.45	ı	0.75	V	
	Voltage	V _{CC} =4.5V		0.7	-	1.0		
		V _{CC} =5.5V		0.85	-	1.15		
		V _{CC} =1.65V		0.35	-	0.6		
	11 . (V _{CC} =2.3V		0.6	-	1.2	V	
ΔV_T	Hysteresis	V _{CC} =3V	-40°C to +125°C	1.05	-	1.65		
	$(V_{T+}-V_{T-})$	V _{CC} =4.5V		1.6	-	2.0		
		V _{CC} =5.5V		1.95	-	2.25		
	·	I_{OH} = -100 μ A, V_{CC} =1.65 V to 5.5 V		Vcc- 0.1	-	-	V	
		I _{OH} = -4mA, V _{CC} =1.65V		1.2	-	-		
\		I _{OH} = -8mA, V _{CC} =2.3V	40°C to 1405°C	1.9	-	-		
V _{OH}		I _{OH} = -16mA, V _{CC} =3V	-40°C to +125°C	2.4	-	-		
		I _{OH} =- 24mA, V _{CC} =3V		2.3	-	-		
		I _{OH} = -32mA, V _{CC} =4.5V		3.8	-	-		
		I_{OL} = 100 μ A, V_{CC} =1.65 V to 5.5 V		-	-	0.1		
		I _{OL} = 4mA, V _{CC} =1.65V		-	-	0.45		
		I_{OL} = 8mA, V_{CC} =2.3V	40°C to 1405°C	-	-	0.3		
Vol		I _{OL} = 16mA, V _{CC} =3V	-40°C to +125°C	-	-	0.4	V	
		I _{OL} = 24mA V _{CC} =3V		-	-	0.55		
		I _{OL} = 32mA, V _{CC} =4.5V		-	-	0.55		
	A	V 5 5V - OND V - OV - 5 5V	+25°C	-	±0.1	±1		
lı	A input	V _I =5.5V or GND, V _{CC} =0V to 5.5V	-40°C to +125°C	-	-	±5	μA	
loff		\(\text{\color=1}\)	+25°C	-	±0.1	±1		
		V_1 or V_0 =5.5 V , V_{CC} =0	-40°C to +125°C	-	-	±10	μA	
	V _I =5.5V or GND, I _O =0,	+25°C	-	0.1	1			
Icc		V _{CC} =1.65V to 5.5V	-40°C to +125°C	-	-	10	μΑ	
		One input at Vcc- 0.6V,						
ΔI_{CC}		Other inputs at Vcc or GND,	-40°C to +125°C		-	500	μΑ	
		V _{CC} =3V to 5.5V					-	

REV1.0 - NOV 2021 RELEASED - - 5 -

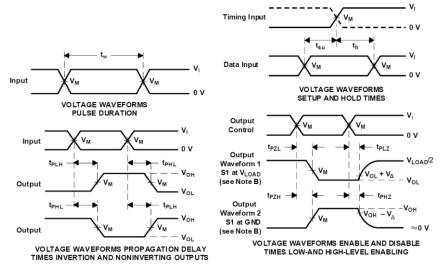
AC ELECTRICAL CHARACTERISTICS

 T_A = +25°C, unless otherwise noted. NOTE3

Parameter	Symbol	Con	ditions	Temp	Min	Тур	Max	Unit
		V _{CC} =1.8V±0.15V	C _L =30pF, R _L =500Ω	-40°C to +125°C	-	7.5	-	
Propagation		V _{CC} =2.5V±0.2V	C _L =30pF, R _L =500Ω		-	3.6	-	
Delay	t pd	V _{CC} =3.3V±0.3V	C _L =50pF, R _L =500Ω		-	3.1	-	ns
		V _{CC} =5V±0.5V	C _L =50pF, R _L =500Ω		-	2.7	-	
Input Capacitance	Ci	V _{CC} =3.3V	V _I =V _{CC} or GND	+25°C	-	4	ı	pF
D		V _{CC} =1.8V			-	20	-	
Power dissipation	0	V _{CC} =2.5V	f=10MHz	+25°C	-	21	-	"F
	$C_{\sf pd}$	Vcc=3.3V			-	22	-	pF
capacitance		V _{CC} =5V			-	25	-	


NOTE3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation.

REV1.0 - NOV 2021 RELEASED - - 6 -


DETAILED INFORMATION

Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
tplz/tpzl	V _{LOAD}
tpHz/tpzH	GND

V	Inputs		V _a ,	V		0	VΔ
Vcc	Vı	t _r /t _f	V _M	VLOAD CL		R∟	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	1kΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	50pF	500Ω	0.3V

NOTE A: C_L includes probe and jig capacitance.

NOTE B: Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

NOTE C: All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω .

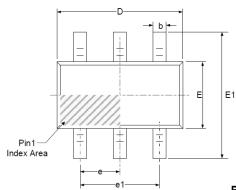
NOTE D: The outputs are measured one at a time, with one transition per measurement.

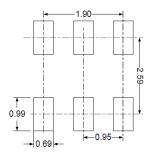
NOTE E: t_{PLZ} and t_{PHZ} are the same as t_{dis} .

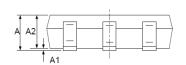
NOTE F: t_{PZL} and t_{PZH} are the same as t_{en} .

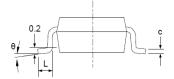
NOTE G: t_{PLH} and t_{PHL} are the same as t_{pd} .

NOTE H: All parameters and waveforms are not applicable to all devices.

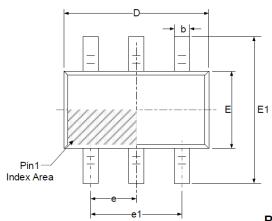

Figure 1. Load Circuit and Voltage Waveforms

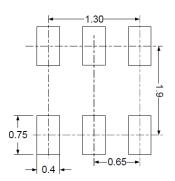

REV1.0 - NOV 2021 RELEASED - -7


PACKAGE INFORMATION

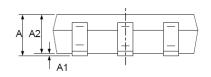

Dimension in SOT-26 (Unit: mm)

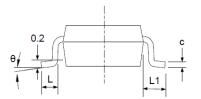
RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	Millim	eters	Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	0.950 BSC		BSC	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

REV1.0 - NOV 2021 RELEASED - -8 -




Dimension in SC70-6 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Cumbal	Millime	eters	Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
Е	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 BSC		0.026	BSC	
e1	1.300	BSC	0.051	BSC	
L	0.260	0.460	0.010	0.018	
L1	0.52	25	0.0)21	
θ	0°	8°	0°	8°	

REV1.0 - NOV 2021 RELEASED - - 9 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - NOV 2021 RELEASED - - 10 -