DESCRIPTION

The A3085A is a half-duplex RS-485 transceiver with $\pm 15 \mathrm{kV}$ IEC 61000-4-2 contact ESD protection. This device contains one driver and one receiver. The A3085A includes fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled. The A3085A features reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps. The A3085A has a $1 / 8$ unit load receiver input impedance that allows up to 256 transceivers on the bus.

The A3085A is available in SOP8 package

ORDERING INFORMATION

Package Type	Part Number		
SOP8	M8	A3085AM8R	
SPQ: 2,500pcs/Reel		A3085AM8VR	
Note		V: Halogen free Package R: Tape \& Reel	

AiT provides all RoHS products

FEATURES

- $\quad+3.3 \mathrm{~V}$ or +5 V Operation
- True Fail-Safe Receiver
- Maximum Data Rate: $500 \mathrm{kbps}\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\right)$

$$
250 \mathrm{kbps}(\mathrm{Vcc}=3.3 \mathrm{~V})
$$

- Allow Up to 256 Transceivers on the Bus
- I/O Pins ESD Protection: $\pm 15 \mathrm{kV}$ IEC 61000-4-2, Contact Discharge
- Available in SOP8 package

APPLICATION

- Smart Meter
- DVR
- RS-485 Communications
- Level Translators
- Transceivers for EMI-Sensitive Applications
- Industrial-Control Local Area Networks
- Energy Meter Networks
- Lighting Systems

TYPICAL APPLICATION

Typical Half-Duplex RS-485 Network

PIN DESCRIPTION

Pin \#	Symbol	Functions
1	RO	Receiver Output.
2	/RE	Receiver Output Enable. /RE is low to enable the Receiver; /RE is high to disable the Receiver.
3	DE	Driver Output Enable. DE is high to enable the Driver; DE is low to disable the Driver.
4	DI	Driver Input
5	GND	Ground.
6	A	Non-inverting Receiver Input and Non-inverting Driver Output.
7	B	Inverting Receiver Input and Inverting Driver Output.
8	Vcc	Power Supply.

FUNCTION TABLE

Transmitting					Receiving			
Inputs			Outputs		Inputs			Outputs
/RE	DE	DI	A	B	/RE	DE	A-B	RO
X	1	1	1	0	0	X	$>-50 \mathrm{mV}$	1
X	1	0	0	1	0	X	<-200mV	0
		0	0		0	X	Open/Shorted	1
0	0	X	High-Z	High-Z	1	1	X	High-Z
1	0	X			1	0	X	Shutdown (High-Z)

ABSOLUTE MAXIMUM RATINGS

Vcc, Power Supply	+7 V
$/ R E, D E$, Control Input Voltage	$-0.3 \mathrm{~V} \sim \mathrm{Vcc}+0.3 \mathrm{~V}$
DI, Transmitter Input Voltage	$-0.3 \mathrm{~V} \sim \mathrm{Vcc}+0.3 \mathrm{~V}$
A, B, Transmitter Output Voltage	$\pm 13 \mathrm{~V}$
A, B, Receiver Input Voltage	$\pm 13 \mathrm{~V}$
RO, Receiver Output Voltage	$-0.3 \mathrm{~V} \sim \mathrm{Vcc}^{+}+0.3 \mathrm{~V}$
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}$
Operating Junction Temperature	$125^{\circ} \mathrm{C}$

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AiT Semiconductor Inc.
A3085A
www.ait-ic.com

DC ELECTRICAL CHARACTERISTICS

(5V Operation)
$\mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$, Typical Values are $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ NOTE1

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Power Supply	Vcc			4.5	-	5.5	V
Driver							
Differential Driver Output (no load)	Vod1	Figure 1		-	-	Vcc	V
Differential Driver Output	Vod2	Figure 1, R=27 Ω		1.5	-	-	V
Change in Magnitude of Differential Output Voltage ${ }^{\text {NOTE2 }}$	$\Delta \mathrm{V}_{\text {OD }}$	Figure 1, $\mathrm{R}=27 \Omega$		-	-	0.2	V
Driver Common-mode Output Voltage	Voc	Figure 1, R=27 Ω		1.0	-	3.0	V
Change in Magnitude of Common-Mode Voltage ${ }^{\text {NOTE2 }}$	$\Delta \mathrm{Voc}$	Figure 1, R=27 Ω		-	-	0.2	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	DE, DI, /RE		2.0	-	-	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DE, DI, /RE		-	-	0.8	V
DI Input Hysteresis	VHYS			-	100	-	mV
Input Current(A and B)	lin4	DE=GND, $\mathrm{V}_{\mathrm{cc}}=$ GND or 5.25 V	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	-	-	125	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$	-75	-	-	
Driver Short-Circuit Output Current	losd	A Pin Short to B Pin		-100	-	100	mA
Receiver							
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cm}} \leq 12 \mathrm{~V}$		-200	-125	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$			-	40	-	mV
Receiver Output High Voltage	V OH	$\mathrm{I}_{0}=-8 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-50 \mathrm{mV}$		4.0	-	-	V
Receiver Output Low Voltage	Vol	$\mathrm{IO}=8 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		-	-	0.4	V
Three-State Output Current at Receiver	lozr			-	-	± 1	$\mu \mathrm{A}$
Receiver Input Resistance	$\mathrm{R}_{\text {IN }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {См }} \leq 12 \mathrm{~V}$		96	-	-	$\mathrm{k} \Omega$
Receiver Output Short-Circuit Current	losR	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Ro}} \leq \mathrm{V}_{\mathrm{Cc}}$		± 7	-	± 95	mA
Supply Current							
Supply Current	Icc	No load, /RE= DI=GND or V_{cc}	$\mathrm{DE}=\mathrm{V}_{\mathrm{cc}}$	-	350	600	$\mu \mathrm{A}$
			DE=GND	-	370	600	$\mu \mathrm{A}$
Supply Current in Shutdown Mode	Ishdn	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, / \mathrm{RE}=\mathrm{V} \\ & \mathrm{DI}=\mathrm{V}_{\mathrm{cc}} \text { or } \mathrm{GND} \end{aligned}$		-	-	10	$\mu \mathrm{A}$

AiT Semiconductor Inc.
A3085A
www.ait-ic.com

(3.3V Operation)

$\mathrm{V}_{\mathrm{C}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$, Typical Values are $\mathrm{V} \mathrm{CC}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{\text {NOTE }} 1$

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Power Supply	Vcc			3	-	3.6	V
Driver							
Differential Driver Output (no load)	Vod1	Figure 1		-	-	Vcc	V
Differential Driver Output	Vod2	Figure 1, $\mathrm{R}=27 \Omega$		0.8	1.15	-	V
Change in Magnitude of Differential Output Voltage ${ }^{\text {NOTE }} 2$	$\Delta \mathrm{V}_{\text {OD }}$	Figure 1, $\mathrm{R}=27 \Omega$		-	-	0.2	V
Driver Common-mode Output Voltage	Voc	Figure 1, $\mathrm{R}=27 \Omega$		1.0	-	3.0	V
Change in Magnitude of Common-Mode Voltage ${ }^{\text {NOTE } 2}$	$\Delta \mathrm{Voc}$	Figure 1, $\mathrm{R}=27 \Omega$		-	-	0.2	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	DE,DI,/RE		2.0	-	-	V
Input Low Voltage	$V_{\text {IL }}$	DE,DI,/RE		-	-	0.8	V
DI Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$			-	100	-	mV
Input Current(A and B)	lina	DE=GND, $\mathrm{V}_{\mathrm{cc}}=$ GND or 3.6 V	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	-	-	125	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$	-75-	-	-	
Driver Short-Circuit Output Current	losd	A Pin Short to B Pin		-100	-	100	mA
Receiver							
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leqq \mathrm{~V}_{\text {См }} \leqq 12 \mathrm{~V}$		-200	-125	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$			-	40	-	mV
Receiver Output High Voltage	V OH	$\mathrm{IO}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-50 \mathrm{mV}$		4.0	-	-	V
Receiver Output Low Voltage	Vol	$\mathrm{IO}_{\mathrm{O}}=2.5 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		-	-	0.4	V
Three-State Output Current at Receiver	lozr			-	-	± 1	$\mu \mathrm{A}$
Receiver Input Resistance	R_{IN}	$-7 \mathrm{~V} \leqq \mathrm{~V}_{\text {См }} \leqq 12 \mathrm{~V}$		96	-	-	$\mathrm{k} \Omega$
Receiver Output Short-Circuit Current	losr	$0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{Ro}} \leqq \mathrm{V}_{\mathrm{cc}}$		± 7	-	± 95	mA
Supply Current							
Supply Current	Icc	No load, /RE= $\mathrm{DI}=\mathrm{GND}$ or V_{cc}	$\mathrm{DE}=\mathrm{V}$ cc	-	270	600	$\mu \mathrm{A}$
			DE=GND	-	290	600	$\mu \mathrm{A}$
Supply Current in Shutdown Mode	Ishon	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, / \mathrm{RE}=\mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{DI}=\mathrm{V}_{\mathrm{cc}} \text { or } \mathrm{GND} \end{aligned}$		-	-	10	$\mu \mathrm{A}$

NOTE1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted
NOTE2: $\Delta V_{O D}$ and $\Delta V_{O C}$ are the changes in $V_{O D}$ and $V_{o c}$, respectively, when the DI input changes state.

SWITCHING CHARACTERISTICS

(5V Operation)
$\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$, Typical values @ $\mathrm{V} \mathrm{Cc}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Driver Input to Output	tDPLH	Figure 3 and $5, \mathrm{R}_{\text {dIFF }}=54 \Omega$	-	300	800	ns
	tDPHL	$\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	-	300	800	
Driver Output Skew \|TDPLH - TDPHL	toskew	Figure 3 and 5 , $R_{\text {DIFF }}=54 \Omega$ $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	-	-	100	ns
Driver Rise or Fall Time	$t_{\text {DR }}, t_{\text {dF }}$	Figure 3 and $5, R_{\text {dIFF }}=54 \Omega$ $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	-	420	900	ns
Maximum Data Rate	$\mathrm{F}_{\text {MAX }}$		500	-	-	kbps
Driver Enable to Output High	$t_{\text {DzH }}$	Figure 4 and 6, CL=100pF S2 Closed	-	-	300	ns
Driver Enable to Output Low	tozl	Figure 4 and 6, $C_{L}=100 \mathrm{pF}$ S1 Closed	-	-	500	ns
Driver Disable Time from Low	tolz	Figure 4 and 6, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ S1 Closed	-	-	900	ns
Driver Disable Time from High	$t_{\text {DHz }}$	Figure 4 and 6, CL=15pF S2 Closed	-	-	800	ns
Receiver Input to Output	$t_{\text {RPLH }}$ $t_{\text {RPHL }}$	Figure 7 and $9,\left\|V_{I D}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leqq 15 \mathrm{~ns}$	-	150	300	ns
\|TRPLH - $\mathrm{T}_{\text {RPHL }} \mid$ Differential Receiver Skew	$t_{\text {RSKD }}$	Figure 7 and $9,\left\|\mathrm{~V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leqq 15 \mathrm{~ns}$	-	10	-	ns
Receiver Enable to Output Low	$t_{\text {RzL }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S 1 Closed	-	20	50	ns
Receiver Enable to Output High	$t_{\text {RzH }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF} \text { S2 Closed }$	-	20	50	ns
Receiver Disable Time from Low	$t_{\text {RLZ }}$	Figure 2 and 8 , $C_{R L}=15 \mathrm{pF}$ S 1 Closed	-	30	60	ns
Receiver Disable Time from High	$t_{\text {RHZ }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF} \text { S2 Closed }$	-	30	60	ns
Time to Shutdown	tshdn		-	500	1000	ns
Driver Enable from Shutdown to Output High	tozH(SHDN)	Figure 4 and6 , CL=100pF S2 Closed	-	-	2500	ns
Driver Enable from Shutdown to Output Low	tozl(SHDN)	Figure 4 and 6 , CL=100pF S1 Closed	-	-	2500	ns
Receiver Enable from Shutdown to Output High	trzH(SHDN)	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF} \text { S2 Closed }$	-	-	2500	ns
Receiver Enable from Shutdown to Output Low	$\mathrm{t}_{\text {RZL }}$ (SHDN)	Figure 2 and 8 , CRL=15pF S1 Closed	-	-	2500	ns

AiT Semiconductor Inc.
A3085A
www.ait-ic.com

(3.3V Operation)

$\mathrm{V}_{\mathrm{cc}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$, Typical values are at $\mathrm{V} \mathrm{Cc}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Driver Input to Output	t ${ }_{\text {DPLH }}$	Figure 3 and $5, R_{\text {DIFF }}=54 \Omega$ $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	-	280	800	ns
	$t_{\text {DPHL }}$		-	280	800	
Driver Output Skew \|TDPLH $-T_{\text {DPHL }} \mid$	toskew	Figure 3 and $5, R_{\text {diFF }}=54 \Omega$ $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	-	-	100	ns
Driver Rise or Fall Time	tDR, tbF	Figure 3 and $5, R_{\text {DIFF }}=54 \Omega$ $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	-	450	900	ns
Maximum Data Rate	$\mathrm{F}_{\text {max }}$		250	-	-	kbps
Driver Enable to Output High	$t_{\text {DzH }}$	Figure 4 and 6, CL=100pF S2 Closed	-	-	300	ns
Driver Enable to Output Low	tozl	Figure 4 and 6, CL=100pF S1 Closed	-	-	500	ns
Driver Disable Time from Low	tolz	Figure 4 and 6, CL=15pF S1 Closed	-	-	900	ns
Driver Disable Time from High	$t_{\text {DHZ }}$	Figure 4 and 6, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ S2 Closed	-	-	800	ns
Receiver Input to Output	$\begin{aligned} & \mathrm{t}_{\mathrm{RPLH}} \\ & \mathrm{t}_{\mathrm{RPHL}} \end{aligned}$	Figure 7 and $9,\left\|V_{I D}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leqq 15 \mathrm{~ns}$	-	150	300	ns
\|TRPLH - $\mathrm{T}_{\text {RPHL }}$ \| Differential Receiver Skew	$t_{\text {RSKD }}$	Figure 7 and $9,\left\|V_{\text {ID }}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leqq 15 \mathrm{~ns}$	-	10	-	ns
Receiver Enable to Output Low	$t_{\text {RzL }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S1 Closed	-	20	50	ns
Receiver Enable to Output High	$t_{\text {RzH }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S2 Closed	-	20	50	ns
Receiver Disable Time from Low	$t_{\text {RLZ }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S1 Closed	-	30	60	ns
Receiver Disable Time from High	trhz	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S2 Closed	-	30	60	ns
Time to Shutdown	tshDN		-	500	1000	ns
Driver Enable from Shutdown to Output High	tozH(SHDN)	Figure 4 and6 , CL=100pF S2 Closed	-	-	2500	ns
Driver Enable from Shutdown to Output Low	tozl(SHDN)	Figure 4 and 6 , $C_{L}=100 \mathrm{pF}$ S1 Closed	-	-	2500	ns
Receiver Enable from Shutdown to Output High	trzH(SHDN)	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S2 Closed	-	-	2500	ns
Receiver Enable from Shutdown to Output Low	$t_{\text {RZL(SHDN) }}$	Figure 2 and 8 , $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ S1 Closed	-	-	2500	ns

TEST CIRCUITS AND TIMING DIAGRAMS

Figure 1 : Driver DC Test Load

Figure 3 : Driver Timing Test Circuit

Figure 5 : Driver Propagation Delays

Figure 2 : Receiver Enable/Disable Timing Test Load

Figure 4 : Driver Enable/Disable Timing test Load

Figure 6 : Driver Enable and Disable Times

Figure 7 : Receiver Propagation Delays

Figure 8 : Receiver Enable and Disable Times

Figure 9 : Receiver Propagation Delay Test Circuit

BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max
A	-	1.77
A1	0.08	0.28
A2	1.20	1.60
A3	0.55	0.75
b	0.39	0.48
b1	0.38	0.44
c	0.20	0.26
c1	0.19	0.21
D	4.70	5.10
E	5.80	6.20
E1	3.70	4.10
e	1.27 BSC	
h	0.25	0.50
L	0.50	0.80
L1	1.05 REF	
θ	0°	8°

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

