AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

The A3085A is a half-duplex RS-485 transceiver with ± 15 kV IEC 61000-4-2 contact ESD protection. This device contains one driver and one receiver. The A3085A includes fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled. The A3085A features reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps. The A3085A has a 1/8 unit load receiver input impedance that allows up to 256 transceivers on the bus.

The A3085A is available in SOP8 package

FEATURES

- +3.3V or +5V Operation
- True Fail-Safe Receiver
- Maximum Data Rate: 500kbps (Vcc=5V)
 250kbps (Vcc=3.3V)

• Allow Up to 256 Transceivers on the Bus

- I/O Pins ESD Protection: ±15kV IEC 61000-4-2, Contact Discharge
- Available in SOP8 package

APPLICATION

- Smart Meter
- DVR
- RS-485 Communications
- Level Translators
- Transceivers for EMI-Sensitive Applications
- Industrial-Control Local Area Networks
- Energy Meter Networks
- Lighting Systems

ORDERING INFORMATION

Package Type	Part Number			
SOP8	Mo	A3085AM8R		
SPQ: 2,500pcs/Reel	M8	A3085AM8VR		
Nista	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				

TYPICAL APPLICATION

Typical Half-Duplex RS-485 Network

PIN DESCRIPTION

FUNCTION TABLE

Transmitting				Receiving					
	Inputs			Outputs			s	Outputs	
/RE	DE	DI	А	В	/RE	DE	A-B	RO	
Х	1	1	1	1 0		Х	>-50mV	1	
	4	0			0	Х	<-200mV	0	
X		0	0	1	0	Х	Open/Shorted	1	
0	0	Х	High-Z	High-Z	1	1	Х	High-Z	
1	0	v	Shuto	Shut	Shutdown			X	Shutdown
I	0	X (High-Z) 1		0	Х	(High-Z)			

ABSOLUTE MAXIMUM RATINGS

Vcc, Power Supply	+7V
/RE, DE, Control Input Voltage	-0.3V ~ V _{CC} +0.3V
DI, Transmitter Input Voltage	-0.3V ~ V _{CC} +0.3V
A, B, Transmitter Output Voltage	±13V
A, B, Receiver Input Voltage	±13V
RO, Receiver Output Voltage	-0.3V~V _{CC} +0.3V
Operating Temperature	-40°C ~ +85°C
Storage Temperature	-65°C ~ +150°C
Operating Junction Temperature	125℃

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(5V Operation)

 V_{CC} =+5V±5%, T_A=-40°C ~ +85°C, Typical Values are V_{CC} =+5V and T_A = 25°C^{NOTE1}

Parameter	Symbol	Conditio	ons	Min.	Тур.	Max.	Unit
Power Supply	Vcc			4.5	-	5.5	V
Driver							
Differential Driver Output	N						V
(no load)	V _{OD1}	Figure 1		-	-	Vcc	V
Differential Driver Output	V _{OD2}	Figure 1, R=27Ω		1.5	-	-	V
Change in Magnitude of	ΔVod	Figure 1, R=27Ω			-	0.2	V
Differential Output VoltageNOTE2				-	-	0.2	
Driver Common-mode Output	Voc	Figure 1, R=27Ω		1.0		3.0	v
Voltage	VOC			1.0	-	3.0	v
Change in Magnitude of	ΔVoc	Figure 1, R=27Ω		_	_	0.2	v
Common-Mode Voltage ^{NOTE2}	Δv 00					0.2	v
Input High Voltage	VIH	DE, DI, /RE		2.0	-	-	V
Input Low Voltage	VIL	DE, DI, /RE		-	-	0.8	V
DI Input Hysteresis	VHYS		[-	100	-	mV
Input Current(A and B)	l _{IN4}	DE=GND, Vcc=	V _{IN} =12V	-	-	125	μA
	111114	GND or 5.25V	V_{IN} =-7V	-75	-	-	
Driver Short-Circuit Output	Iosd	A Pin Short to B	Din	-100	-	100	mA
Current	1030			-100	-	100	
Receiver	ſ	T		T	r		1
Receiver Differential Threshold	Vтн	⊣ -7V≤V _{CM} ≤12V		-200	-125	-50	mV
Voltage		7 V = V CM = 12 V		200	120	00	
Receiver Input Hysteresis	ΔV_{TH}			-	40	-	mV
Receiver Output High Voltage	Vон	Io=-8mA, VID=-50	mV	4.0	-	-	V
Receiver Output Low Voltage	Vol	Io=8mA, VID=-200	DmV	-	-	0.4	V
Three-State Output Current at	I _{OZR}			_	-	±1	μA
Receiver	IUZR						μ, τ
Receiver Input Resistance	Rin	-7V≤V _{CM} ≤12V		96	-	-	kΩ
Receiver Output	IOSR	Iosr 0V≤V _{R0} ≤V _{CC}		±7	_	±95	mA
Short-Circuit Current	IUSK					100	
Supply Current	1			1			
Supply Current	lcc	No load, /RE=	DE=V _{CC}	-	350	600	μA
		DI=GND or V _{CC}	DE=GND	-	370	600	μA
Supply Current in Shutdown	ISHDN	DE=GND, /RE=V	′сс,			10	μA
Mode	ISTIDIN	DI=V _{CC} or GND		-	_	10	PA

(3.3V Operation)

 V_{CC} =+3.3V±5%,T_A=-40°C ~ +85°C, Typical Values are V_{CC}=+3.3V and T_A = 25°C^{NOTE1}

Parameter	Symbol	Conditio	ons	Min.	Тур.	Max.	Unit
Power Supply	Vcc			3	-	3.6	V
Driver							
Differential Driver Output (no load)	V _{OD1}	Figure 1		-	-	Vcc	V
Differential Driver Output	V _{OD2}	Figure 1, R=27Ω		0.8	1.15	-	V
Change in Magnitude of Differential Output Voltage ^{NOTE2}	ΔV_{OD}	Figure 1, R=27Ω		-	-	0.2	V
Driver Common-mode Output Voltage	Voc	Figure 1, R=27Ω		1.0	-	3.0	V
Change in Magnitude of Common-Mode Voltage ^{NOTE2}	ΔVoc	Figure 1, R=27Ω		-	_	0.2	V
Input High Voltage	VIH	DE,DI,/RE		2.0	-	-	V
Input Low Voltage	VIL	DE,DI,/RE		-	-	0.8	V
DI Input Hysteresis	V _{HYS}			-	100	-	mV
Input Current(A and B)	I _{IN4}	DE=GND, V _{CC} = GND or 3.6V	V _{IN} =12V V _{IN} =-7V	- -75-		125 -	μA
Driver Short-Circuit Output Current	Iosd	A Pin Short to B I	Pin	-100	-	100	mA
Receiver							
Receiver Differential Threshold Voltage	Vтн	-7V≦V _{CM} ≦12V		-200	-125	-50	mV
Receiver Input Hysteresis	ΔV _{TH}			-	40	-	mV
Receiver Output High Voltage	Vон	Io=-1.5mA, VID=-	50mV	4.0	-	-	V
Receiver Output Low Voltage	Vol	Io=2.5mA, VID=-2	00mV	-	-	0.4	V
Three-State Output Current at Receiver	I _{OZR}			-	-	±1	μA
Receiver Input Resistance	Rin	-7V≦V _{CM} ≦12V		96	-	-	kΩ
Receiver Output Short-Circuit Current	Iosr	0V≦V _{RO} ≦V _{CC}		±7	-	±95	mA
Supply Current							
Supply Current	Icc	No load , /RE= DI=GND or V _{CC}	DE=V _{CC} DE=GND	-	270 290	600 600	μA μA
Supply Current in Shutdown Mode	Ishdn	DE=GND, /RE=Vcc, DI=Vcc or GND		-	-	10	μA

NOTE1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

NOTE2: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

SWITCHING CHARACTERISTICS

(5V Operation)

 V_{CC} =+5V±5%, T_A=-40°C ~ +85°C, Typical values @ V_{CC}=+5V, T_A = 25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Driver Input to Output	t _{DPLH}	Figure 3 and 5, R_{DIFF} =54 Ω	-	300	800	20
Driver Input to Output	t dphl	C _{L1} =C _{L2} =100pF	-	300	800	ns
Driver Output Skew	t	Figure 3 and 5, R_{DIFF} =54 Ω			100	ns
T _{dplh} – T _{dphl}	t dskew	C _{L1} =C _{L2} =100pF	-	-		
Driver Rise or Fall Time	too too	Figure 3 and 5, R_{DIFF} =54 Ω	_	420	900	ns
	tdr, tdf	C _{L1} =C _{L2} =100pF	-	420		
Maximum Data Rate	FMAX		500	-	-	kbps
Driver Enchle to Output High	+	Figure 4 and 6,		_	000	
Driver Enable to Output High	tdzн	C∟=100pF S2 Closed	-	-	300	ns
Driver Enable to Output Low	tor	Figure 4 and 6,	_	-	500	nc
	tdzl	C∟=100pF S1 Closed	-	-	500	ns
Driver Disable Time from Low	t DLZ	Figure 4 and 6,	-	-	900	ns
	ULZ	C _L =15pF S1 Closed	-	-		
Driver Disable Time from High	t _{DHZ}	Figure 4 and 6,	-	-	800	ns
	UHZ	C∟=15pF S2 Closed	-			
Receiver Input to Output	t _{RPLH} t _{RPHL}	Figure 7 and 9, $ V_{ID} \ge 2.0V$;	_	150	300	ns
Receiver Input to Output		rise and fall time of Vı⊵≦15ns	-			115
T _{RPLH} – T _{RPHL} Differential	t RSKD	Figure 7 and 9, $ V_{ID} \ge 2.0V$;	_	10	_	ns
Receiver Skew	K SKD	rise and fall time of V _{ID} ≦15ns	_	10	_	115
Receiver Enable to	t _{RZL}	Figure 2 and 8,	_	20	50	ns
Output Low	I RZL	C _{RL} =15pF S1 Closed		20	50	113
Receiver Enable to	t _{RZH}	Figure 2 and 8,	_	20	50	ns
Output High	ικζΠ	C _{RL} =15pF S2 Closed		20	50	113
Receiver Disable Time	t _{RLZ}	Figure 2 and 8,	_	30	60	ns
from Low	I RLZ	C _{RL} =15pF S1 Closed		00	00	
Receiver Disable Time	t RHZ	Figure 2 and 8,	_	30	60	ns
from High	ικη <u>ζ</u>	C _{RL} =15pF S2 Closed		00	00	113
Time to Shutdown	t shdn		-	500	1000	ns
Driver Enable from	tozuroupni	Figure 4 and6 ,			2500	
Shutdown to Output High	tdzh(shdn)	C∟=100pF S2 Closed	-	-	2300	ns
Driver Enable from		Figure 4 and 6,			2500	ne
Shutdown to Output Low	tdzl(shdn)	C∟=100pF S1 Closed	_		2000	ns
Receiver Enable from	tozurousti	Figure 2 and 8,		-	2500	ne
Shutdown to Output High	t _{RZH(SHDN)}	C _{RL} =15pF S2 Closed	_			ns
Receiver Enable from		Figure 2 and 8,			2500	nc
Shutdown to Output Low	trzl(shdn)	C _{RL} =15pF S1 Closed	-	-	2500	ns

(3.3V Operation)

 V_{CC} =+3.3V±5%, T_A=-40°C ~ +85°C, Typical values are at V_{CC} =+3.3V, T_A = 25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Driver Input to Output	t _{DPLH}	Figure 3 and 5, R_{DIFF} =54 Ω	-	280	800	20
	t dphl	C _{L1} =C _{L2} =100pF	-	280	800	ns
Driver Output Skew	4	Figure 3 and 5, R_{DIFF} =54 Ω			100	ns
T _{dplh} – T _{dphl}	t dskew	C _{L1} =C _{L2} =100pF	-	-		
Driver Rise or Fall Time		Figure 3 and 5, R_{DIFF} =54 Ω		450	900	ns
Driver Rise of Fall Time	t_{DR}, t_{DF}	C _{L1} =C _{L2} =100pF	-	450		
Maximum Data Rate	Fmax		250	-	-	kbps
Driver Freekle to Outer t Uisk	1	Figure 4 and 6,				
Driver Enable to Output High	t _{DZH}	C _L =100pF S2 Closed	-	-	300	ns
		Figure 4 and 6,			500	
Driver Enable to Output Low	t dzl	C∟=100pF S1 Closed	-	-	500	ns
	4	Figure 4 and 6,			000	ns
Driver Disable Time from Low	t DLZ	C _L =15pF S1 Closed	-	-	900	
		Figure 4 and 6,			800	ns
Driver Disable Time from High	t _{DHZ}	C∟=15pF S2 Closed	-	-		
	t _{RPLH} t _{RPHL}	Figure 7 and 9, $ V_{ID} \ge 2.0V$;		150	300	ns
Receiver Input to Output		rise and fall time of Vı⊵≦15ns	-			
TRPLH – TRPHL Differential		Figure 7 and 9, $ V_{ID} \ge 2.0V$;		40		20
Receiver Skew	t RSKD	rise and fall time of Vı⊵≦15ns	-	10	-	ns
Receiver Enable to	4	Figure 2 and 8,			50	
Output Low	t RZL	C _{RL} =15pF S1 Closed	-	20	50	ns
Receiver Enable to	1	Figure 2 and 8,			50	
Output High	t rzh	C _{RL} =15pF S2 Closed	-	20	50	ns
Receiver Disable Time	1	Figure 2 and 8,		20		ns
from Low	t _{RLZ}	C _{RL} =15pF S1 Closed	-	30	60	
Receiver Disable Time		Figure 2 and 8,				
from High	t RHZ	C _{RL} =15pF S2 Closed	-	30	60	ns
Time to Shutdown	t shdn		-	500	1000	ns
Driver Enable from		Figure 4 and6,			0500	
Shutdown to Output High	tdzh(shdn)	C _L =100pF S2 Closed	-	-	2500	ns
Driver Enable from		Figure 4 and 6,			0500	
Shutdown to Output Low	tdzl(shdn)	C _L =100pF S1 Closed	-	-	2500	ns
Receiver Enable from		Figure 2 and 8,			2500	
Shutdown to Output High	t _{RZH(SHDN)}	C _{RL} =15pF S2 Closed	-	-		ns
Receiver Enable from		Figure 2 and 8,			0500	ns
Shutdown to Output Low	trzl(shdn)	C _{RL} =15pF S1 Closed	-	-	2500	

TEST CIRCUITS AND TIMING DIAGRAMS

Figure 1 : Driver DC Test Load

Figure 3 : Driver Timing Test Circuit

Figure 5 : Driver Propagation Delays

Figure 2 : Receiver Enable/Disable Timing Test Load

Figure 7 : Receiver Propagation Delays

Figure 8 : Receiver Enable and Disable Times

Figure 9 : Receiver Propagation Delay Test Circuit

BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max		
А	-	1.77		
A1	0.08	0.28		
A2	1.20	1.60		
A3	0.55	0.75		
b	0.39	0.48		
b1	0.38	0.44		
с	0.20	0.26		
c1	0.19	0.21		
D	4.70	5.10		
E	5.80	6.20		
E1	3.70	4.10		
е	1.27	BSC		
h	0.25	0.50		
L	0.50	0.80		
L1	1.05 REF			
θ	0°	8°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.