

DESCRIPTION

The AH8113 is an integrated hall-effect sensor designed specifically to meet the requirements of low-power devices. e.g. as an On/Off switch in Cellular Flip-Phones, with battery operating voltages of 1.65V-5.5V.

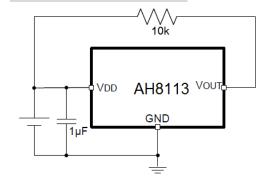
Precise magnetic switching points and high temperature stability are achieved through the unique design of the internal circuit. An onboard clock scheme is used to reduce the average operating current of the IC. During the operate phase the IC compares the actual magnetic field detected with the internally compensated switching points. The output Voltage is switched at the end of each operating phase. During the Stand-by phase the output stage is latched and the current consumption of the device reduced to some μA .

The IC switching behavior is Omnipolar; it can be switched on with either the North or South pole of a magnet.

The AH8113 is available in TSOT-23 and TO-92S packages.

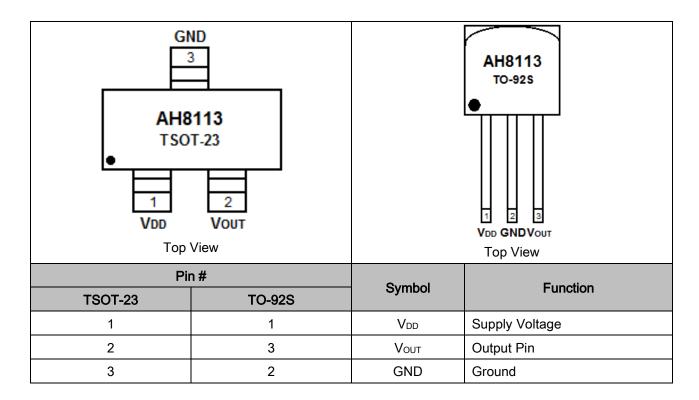
ORDERING INFORMATION

Package Type	Part Number		
TSOT-23	TE3	AH8113TE3R	
SPQ: 4,000pcs/Reel	153	AH8113TE3VR	
TO-92S	70	AH8113ZSB	
SPQ: 1,000pcs/Bag	ZS	AH8113ZSVB	
	V: Halogen free Package R: Tape & Reel		
Note			
	B: Bulk Packing		
AiT provides all RoHS products			


FEATURES

- Micro power design
- 1.65 V to 5.5 V battery operation
- High sensitivity and high stability of the magnetic switching points
- High resistance to mechanical stress
- Digital output signal
- Switching for both poles of a magnet (omnipolar)
- Not suitable for automotive application
- Available in TSOT-23 and TO-92S packages

APPLICATION


- Cover switch in clam-shell cellular phones
- Cover switch in Notebook PC/PDA
- Contact-less switch in consumer products

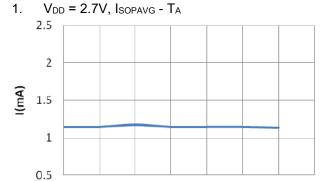
TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{DD} , Supply Voltage	-0.3V ~ 6.0V
IDD, Operating Current	-1mA ~ 4.5mA
V _{ОUТ} , Output Voltage	-0.3V ~ 6.0V
Iоит, Output Current	-1mA~2.0mA
Ts, Storage Temperature Range	-40°C ~ +150°C
T _J , Maximum Junction Temperature	150°C
ESD Protection	4000V

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS

 T_A = +25°C, V_{DD} = 3.0V, unless otherwise specified

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
AC/DC Characteristics						
Supply Voltage	V_{DD}		1.65	-	6.0	V
Averaged Supply Current	Isavg		1	3	10	μΑ
Averaged Current During Operating Time	ISOPAVG		0.5	2.0	3.5	mA
Peak Current During Operating Time	I _{SOPT}		-	-	4.5	mA
Supply Current During Standby Time	I _{SSTB}		1	1.9	8	μA
Output Saturation Voltage	Voutsat	I _{OUT} = 1mA	-	0.13	0.4	V
Output on Leakage Current	IOUTLEAK		-	0.01	1	μA
Output Rise Time	t r	R _L =2.7kΩ, C _L =10pF	-	0.5	1	μs
Output Fall Time	t _f	$R_L=2.7k\Omega$, $C_L=10pF$	-	0.1	1	μs
Operating Time	top		25	100	160	μs
Standby Time	tsтв		60	140	240	ms
Duty Cycle	top/tstb		-	0.071	-	%
Start-up Time of IC	t stu		-	12	20	μs

TYPICAL PERFORMANCE CHARACTERISTICS

20

40

60

80

100

T(℃)

2. T_A = 20°C, I_{SOPAVG} - V_{DD}

2.5

2

1.5

1

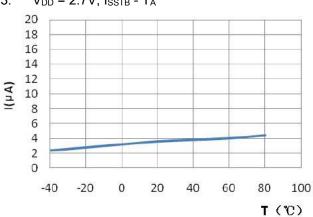
0.5

4.5

5

5.5

6

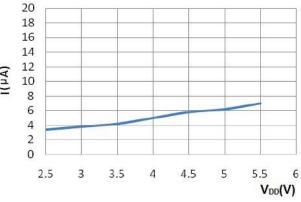

 $V_{DD}(V)$

3. $V_{DD} = 2.7V$, $I_{SSTB} - T_A$

-20

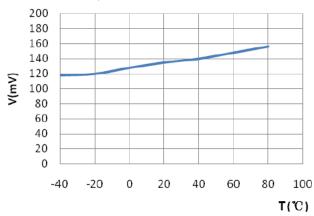
0

-40

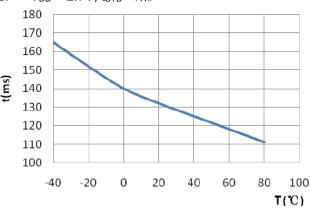

4. $T_A = 20$ °C, $I_{SSTB} - V_{DD}$

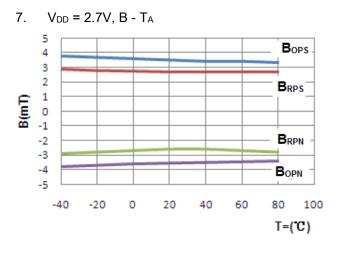
3

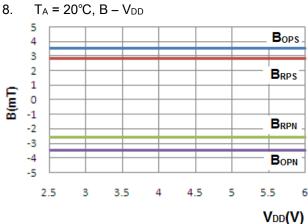
3.5

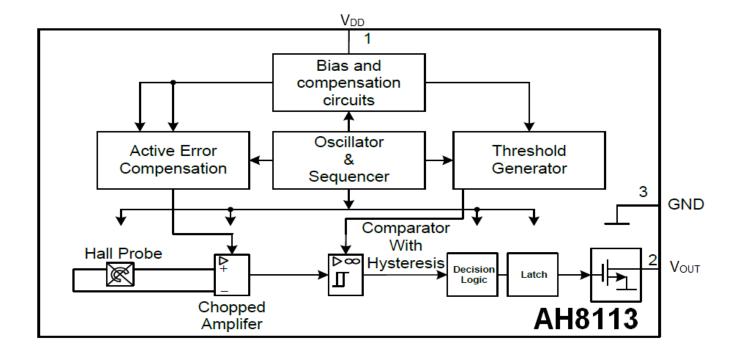

0

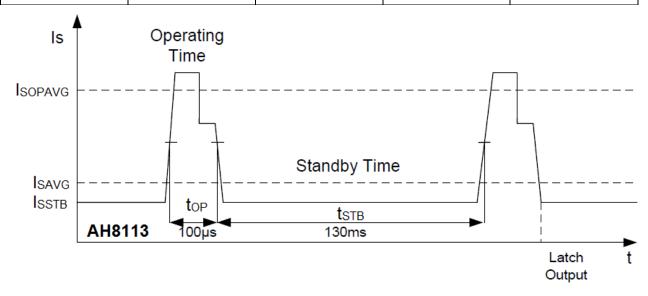
2.5

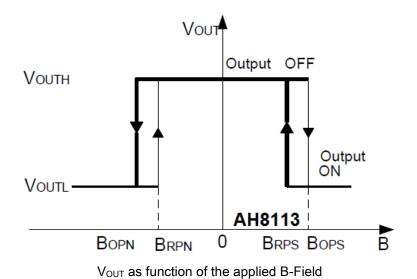



5. $I_{OUT} = 1mA$, $V_{OUTSAT} - T_A$


REV1.5


6. $V_{DD} = 2.7V$, $t_{STB} - T_{A\mu}$


BLOCK DIAGRAM



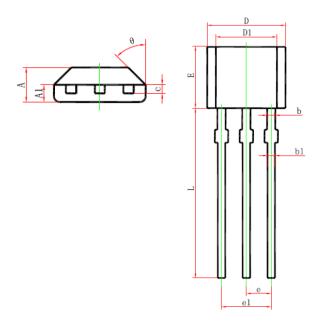
MANGENTIC CHARACTERISTICS

 $T_A = +25$ °C, $V_{DD} = 2.7$ V, unless otherwise specified

Symbol	Min	Тур	Max	Unit
Bops	2	3.5	5	mT
B _{OPN}	-5	-3.5	-2	mT
B _{RPS}	1.2	2.7	4.2	mT
B _{RPN}	-4.2	-2.6	-1.2	mT
Внуѕ	0.2	0.8	1.6	mT

REV1.5

PACKAGE INFORMATION


Dimension in TSOT-23 (Unit: mm)

Symbol	Millim	neters	Inches		
	Min	Max	Min	Max	
А	0.700	0.900	0.028	0.035	
A1	0.000	0.100	0.000	0.004	
A2	0.700	0.800	0.028	0.031	
b	0.350	0.500	0.014	0.020	
С	0.080	0.200	0.003	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.600	1.700	0.063	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.900 BSC		0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Dimension in TO-92S (Unit: mm)

Symbol	Millim	eters	Inches		
	Min	Max	Min	Max	
А	1.420	1.620	0.056	0.064	
A1	0.660	0.860	0.026	0.034	
b	0.420	0.550	0.017	0.022	
b1	0.360	0.480	0.014	0.019	
С	0.360	0.510	0.014	0.020	
D	3.900	4.100	0.154	0.161	
D1	2.970	3.270	0.117	0.129	
Е	3.050	3.250	0.120	0.128	
е	1.270TYP		0.050) TYP	
e1	2.440	2.640	0.096	0.104	
L	15.100	15.500	0.594	0.610	
θ	45°	45° TYP		TYP	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.