

DESCRIPTION

The AO2170 offers high voltage (36V), cost-optimized operation amplifier. AO2170 also offers strong general-purpose DC and AC specifications, including rail-to-rail output, low offset, low offset drift and 1.2MHz bandwidth.

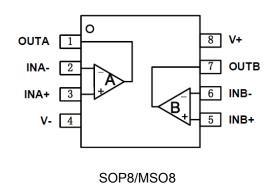
Convenient features such as wide differential input voltage range, high output current, and high slew rate of 0.67V/us make the AO2170 a robust operational amplifier for high-voltage, cost-effective applications. as well as excellent speed/power consumption ratio, providing an excellent bandwidth (1.2MHz) and slew rate of 0.67V/us. The op-amps are unity gain stable and feature an ultra- low input bias current.

The AO2170 is stable at capacitance up to 100pF (Typ) and operation under single power supplies of 3V to 36V or dual power supplies of $\pm 1.5V$ to $\pm 18V$.

The AO2170 is available in SOP8 and MSOP8 packages.

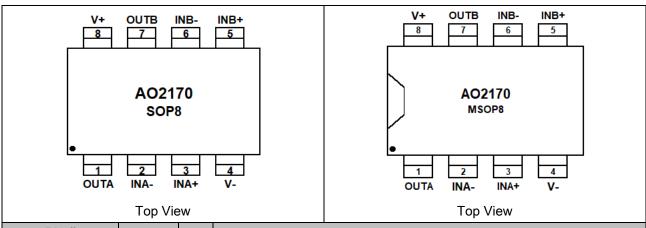
ORDERING INFORMATION

Package Type	Part Number				
SOP8	M8	AO2170M8R			
SPQ: 4,000pcs/Reel	IVIO	AO2170M8VR			
MSOP8	MS8	AO2170MS8R			
SPQ: 4,000pcs/Reel	IVISO	AO2170MS8VR			
Note	V: Halogen free Package				
Note	R: Tape & Reel				
AiT provides all RoHS products					


FEATURES

- Low Offset Voltage: ±0.8mV (Typical)
- Low Offset Voltage Drift: ±3uV/°C
- Low Noise: 45nV/√Hz at 1kHz
- High Common-Mode Rejection Ratio: 110dB
- Low Bias Current: ±10pA
- Rail-to-Rail Output
- Wide Bandwidth:1.2MHz GBW
- High Slew Rate: 0.67V/us
- Low Quiescent Current:150uA per Amplifier
- Supply Range: +3V to +36V
- Available in SOP8 and MSOP8 packages

APPLICATION


- Merchant Network and Server PSU
- Industrial AC-DC & Merchant DC/DC
- Motor Drives: AC and Servo Drive Power Supplies
- Building Automation
- Sensors
- Photodiode Amplification
- Active Filters
- Test Equipment

TYPICAL APPLICATION

REV1.0 - JUL 2021 RELEASED - -1

PIN DESCRIPTION

Pin #		Cymahal	1/0	Function	
SOP8	PSOP8	Symbol	1/0	FullCtion	
1	1	OUTA	0	Output, channel A	
2	2	INA-	I	Inverting input, channel A	
3	3	INA+	I	Noninverting input, channel A	
4	4	V-	-	Negative (lowest) power supply or ground (for single supply operation)	
5	5	INB+	I	Noninverting input, channel B	
6	6	INB-	I	Inverting input, channel B	
7	7	OUTB	0	Output, channel B	
8	8	V+	-	Positive (highest) power supply	

REV1.0 - JUL 2021 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range, unless otherwise noted

Supply Voltage, Vs=(V+) - (V-)	-0.7V ~ 36V				
Signal Input Voltage PinNOTE1	(V-)-0.2V ~ (V+)0.2V				
Signal Output Voltage PinNOTE2	(V-)-0.2V ~ (V+)0.2V				
Signal Input Current PinNOTE1	-10mA ~ 10mA				
Signal Output Current PinNOTE2	-100mA ~ 100mA				
Output Short-Circuit CurrentNOTE3	Continuous				
T _A , Operating Range Temperature	-40°C ∼ 125°C				
T _J , Junction Temperature	150°C				
T _{STG} , Storage Temperature	-55°C ~ 150°C				
ESD Ratings ^{NOTE4}					
	Human-body model (HBM)	±5000V			
V _(ESD) , Electrostatic discharge	Machine Model (MM)	±200V			

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

NOTE2: Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±100mA or less.

NOTE3: Short-circuit to ground, one amplifier per package.

NOTE4: JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range, unless otherwise noted

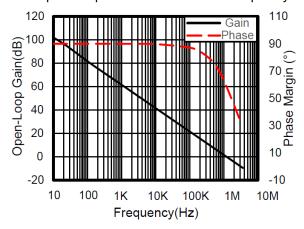
Parameter			Тур.	Max.	Unit
Supply voltage Vs= (V+) - (V-)	Single-Supply	3	-	36	
	Dual-Supply	±1.5	-	±18	V

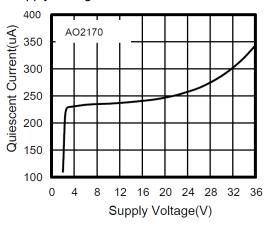
REV1.0 - JUL 2021 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

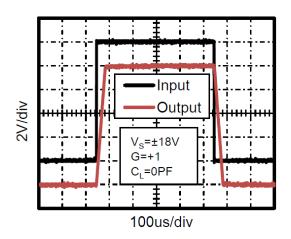
at T_A = +25°C, Vs=3V to 36V, R_L = 10k Ω connected to Vs/2, and V_{OUT} = Vs/2, unless otherwise noted.

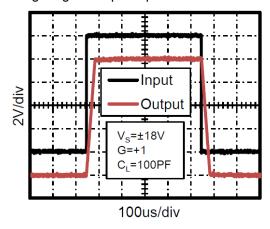
Parameter	Symbol	Conditions	TJ	Min	Тур	Max	Units
POWER SUPPLY							
Operating Voltage Range	Vs		+25°C	3	-	36	V
Quiescent	uiescent		.05%	-	150	250	
Current/Amplifier	lα	Vs=±18V, Io=0mA	+25°C	-	200	350	uA
Power-Supply Rejection Ratio	PSRR	Vs=5V to 36V	+25°C	98	120	-	dB
INPUT				· · · · · · · · · · · · · · · · · · ·		·	
Input Offset Voltage	Vos	V _{CM} =V _S /2	+25°C	-4	±0.8	4	mV
input Onset voltage	V 03	V CIVI— V S/Z	-40°C to 125°C	-	±1.1		111 V
Input Offset Voltage Average Drift	Vos Tc		-40°C to 125°C	-	3	-	uV/°C
Input Bias Current	I_{B}	V _{CM} =0V	+25°C	-	10	60	ъ^
input bias Guiterit	IB	VCM-0V	-40°C to 125°C	-	600	-	pA
Input Offset Current	los	V _{CM} =0V	+25°C	-	10	60	A
input Onset Current	108	VCM-0V	-40°C to 125°C	-	600	-	pA
Common-Mode Voltage Range	Vсм	Vs= ±18V	+25°C	(V-)-0.1	-	(V+)-2	V
Common-Mode	01400	Vs=±2.5V, V _{CM} =(V-)-0.1V to (V+)-2V	+25°C	70	110	-	- dB
Rejection Ratio	CMRR	Vs=±18V, V _{CM} =(V-)-0.1V to (V+)-2V	+25°C	70	-	-	
OUTPUT		,				•	
Open-Loop Voltage Gain	Aol	R _L =10KΩ, Vo=(V-)-0.6V to (V+)-0.6V	+25°C	93	115	-	dB
Output Swing	Vон	V _S =±18V, R _L =10KΩ	+25°C	17.85	ı	-	V
Output Swing	V_{OL}			-	ı	-17.85	V
Short-Circuit Current	Isc	V _S =36V, Vo=0V	+25°C	-	70	-	mA
Capacitive Load Drive	C_{LOAD}		+25°C	-	100	-	pF
FREQUENCY RESPONS	E						
Slew Rate	SR	G=+1, C _L =100pF	+25°C	-	0.67	-	V/us
Gain-Bandwidth Product	GBW		+25°C	-	1.2	-	MHz
Setting Time,0.01%	ts	V _S =±2.5V, G=+1, C _L =100pF, Step=2V	+25°C	-	5	-	us
Overload Recovery Time	tor	V _{IN} ·Gain≥V _S , G=11	+25°C	-	5	-	us
Turn On Time	ton		+25°C	-	10	-	us
NOISE							
Input Voltage Noise	En	f=0.1Hz to 10Hz, Vs=±2.5V	+25°C	-	16	-	uVpp
Input Voltage Noise Density	en	f=1KHz	+25°C	-	45	-	nV/√Hz

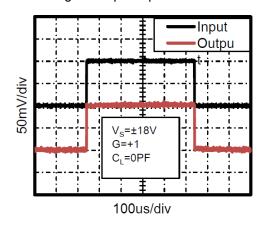

REV1.0 - JUL 2021 RELEASED - - 4 -

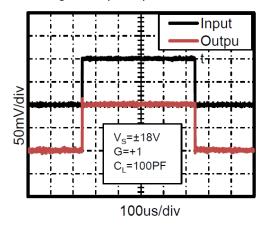

TYPICAL PERFORMANCE CHARACTERISTICS

at T_A = +25°C, V_S =±18V, R_L = 10k Ω connected to $V_S/2$, V_{OUT} = $V_S/2$, unless otherwise noted.

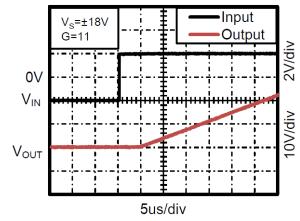

1. Open-Loop Gain and Phase vs. Frequency

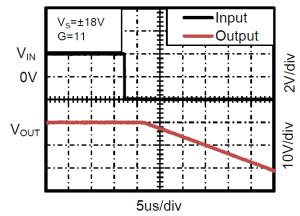

2. Supply Voltage vs. Quiescent Current

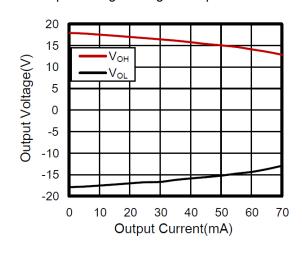

3. Large Signal Step Response

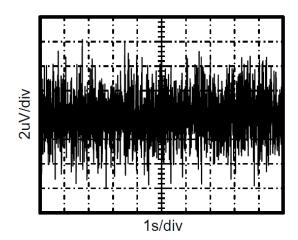

4. Large Signal Step Response

5. Small Signal Step Response

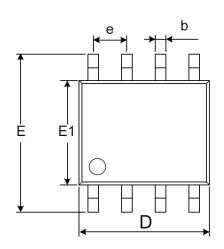

6. Small Signal Step Response

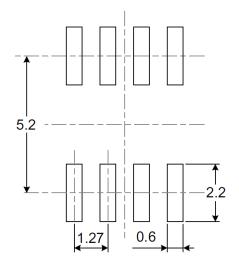

REV1.0 - JUL 2021 RELEASED - - 5 -



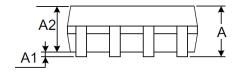

8. Negative Overvoltage Recovery

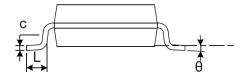
9. Output Voltage Swing vs Output Current


10. 0.1Hz to 10Hz Noise at Vs=5V

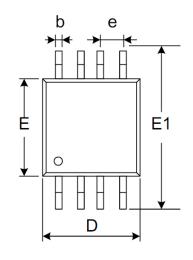


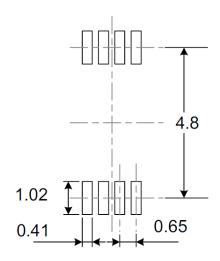
REV1.0 - JUL 2021 RELEASED - - 6 -


PACKAGE INFORMATION

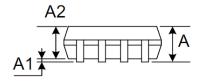

Dimension in SOP8 (Unit: mm)

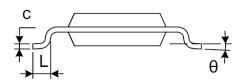
RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.187	0.197	
е	1.270	BSC	0.050 BSC		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

REV1.0 - JUL 2021 RELEASED - - 7




Dimension in MSOP8 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650	BSC	0.026 BSC		
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

REV1.0 - JUL 2021 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUL 2021 RELEASED - - 9 -