

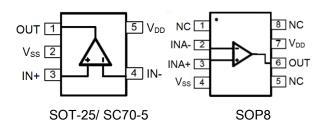
DESCRIPTION

The AO1376 presents a new generation of low-noise operational amplifier, offering outstanding dc precision and ac performance. Rai-to-Rail input and output, low offset (3.5mV, maximum), low noise (8nV $/\sqrt{\text{Hz}}$), quiescent current of 1.1mA, and high gain-bandwidth of 11MHz make AO1376 very attractive for a variety of precision and portable applications. In addition, this AO1376 has reasonably wide supply range with excellent PSRR, making it attractive for applications that run directly from batteries without regulation.

The AO1376 (single) is available in SOT-25, SC70-5 and SOP8 packages.

ORDERING INFORMATION

Package Type	Part Number				
SOT-25	E5	AO1376E5R			
SPQ: 3,000pcs/Reel	EO	AO1376E5VR			
SC70-5	C5	AO1376C5R			
SPQ: 3,000pcs/Reel	Co	AO1376C5VR			
SOP8	M8	AO1376M8R			
SPQ: 4,000pcs/Reel	IVIO	AO1376M8VR			
Note	V: Halogen free Package				
Note	R: Tape & Reel				
AiT provides all RoHS products					


FEATURES

- Low Noise : 8nV/ √Hz @10kHz
- Single-Supply Operation
- Supply Voltage: 2.1V to 5.5V
- Rail-to-Rail Input / Output
- Low Offset Voltage: 3.5mV (Max.)
- Gain-Bandwidth: 11MHz (Typ.)
- Low Input Bias Current: 1pA (Typ.)
- High Slew Rate: 9V/μs
- Settling Time to 0.1% with 2V Step: 0.3µs
- Quiescent Current: 1.1mA per Amplifier (Typ.)
- Operating Temperature: -40°C ~ +125°C
- Available in SOT-25, SC70-5 and SOP8 packages

APPLICATION

- ADC Buffer
- Audio Equipment
- Medical Instrumentation
- Handheld Test Equipment
- Active Filtering
- Sensor Signal Conditioning
- Battery-Powered Instrumentation

TYPICAL APPLICATION

REV1.0 - FEB 2020 RELEASED - -1

Analog Inverting Input / Input A

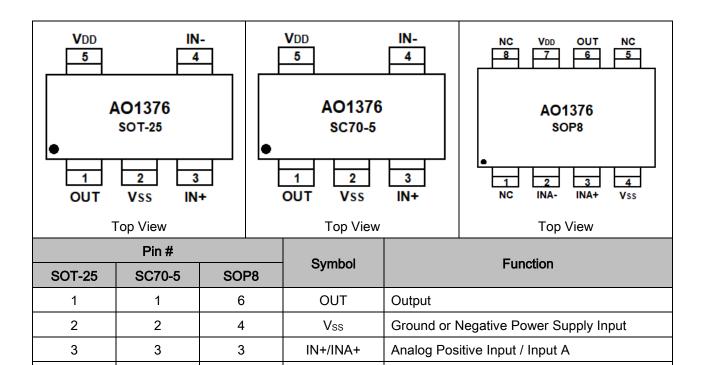
Positive Power Supply Input

No connection

PIN DESCRIPTION

4

5


4

5

2

7

1,5,8

IN-/INA-

 V_{DD}

NC

REV1.0 - FEB 2020 RELEASED - -2 -

AO1376

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (VDD to VSS)	-0.5V~+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V~Vpp+0.5V		
PDB Input Voltage	V _{SS} -0.5V~+7V		
Operating Temperature Range	-40°C~+125°C		
Junction Temperature	+160°C		
Storage Temperature Range	-55°C~+150°C		
Lead Temperature (soldering, 10sec)	+260°C		
Package Thermal Resistance (T _A =+25°C)			
θ _{JA} , SOT-25	190°C/W		
θ _{JA} , SC70-5	333°C/W		
θ _{JA} , SOP8	125°C/W		
ESD Susceptibility			
НВМ	8kV		
MM	400V		

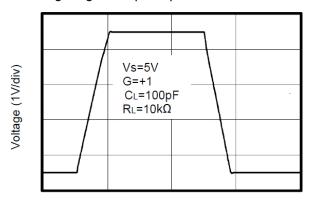
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REV1.0 - FEB 2020 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

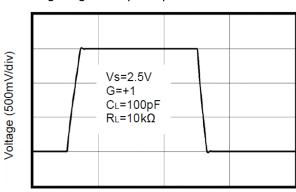
At $V_S=5V$, $T_A = +25$ °C, $V_{CM} = -25$ °C,	, _		Typ Min/Max Over Temperature						
Parameter	Symbol	Conditions			0°C	-40°C	-40°C		Min /
i didilictei	Cyllibol	Conditions	+25℃	+25℃	to	to	to	Units	Max
					70°C	85℃	125℃		IVIAX
INPUT CHARACTERISTIC	CS	T	T	I I		1	Τ	I	
Input Offset Voltage	Vos		0.8	3.5	3.9	4.3	4.6	mV	Max
Input Bias Current	lΒ		1	-	-	-	-	pА	Тур
Input Offset Current	los		1	-	-	-	-	pА	Тур
Input Common Mode	V _{CM}	V _S = 5.5V	-0.1 to			_		V	Тур
Voltage Range	V CIVI	V3 - 0.5 V	+5.6					V	ТУР
		$V_S = 5.5V$,	82	65	64	64	63	dB	Min
Common Mode Rejection	CMRR	V _{CM} = -0.1V to 4V	02			0,		uВ	141111
Ratio	OWNA	$V_S = 5.5V$,	75	_	_	_	_	dB	Min
		$V_{CM} = -0.1V \text{ to } 5.6V$, 0					uВ	141111
		$R_L = 600\Omega$,	90	80	76	75 -	68	dB	Min
Open-Loop Voltage Gain	Aol	$V_0 = 0.15V \text{ to } 4.85V$	30						IVIIII
Open-Loop Vollage Gain	7 OL	$R_L = 10k\Omega$,	108					dB	Min
		$V_0 = 0.05V \text{ to } 4.95V$	100					u.b	
Input Offset Voltage Drift	ΔV _{OS} /ΔT		2.4	-	-	-	-	μV/°C	Тур
OUTPUT CHARACTERIS	TICS	T	I	1		1	I	1 1	
Output Voltage Swing		R _L = 600Ω	0.1	-	-	-	-	V	Тур
from Rail		R _L = 10kΩ	0.015	-	-	-	-	V	Тур
Output Current	Іоит		70	55	45	42	38	mA	Min
Closed-Loop Output		f = 100kHz, G = 1	7.5	_	_	_	_	Ω	Тур
Impedance		1 1001(112, 0 1	7.0					32	1 7 1
POWER-DOWN DISABLE	<u> </u>	T	ı	Г		T	Г		
Turn-On Time			1.1	-	-	-	-	μs	Тур
Turn-Off Time			0.3	-	-	-	-	μs	Тур
DISABLE Voltage-Off			-	0.8	-	-	-	V	Max
DISABLE Voltage-On			-	2	-	-	-	V	Min
POWER SUPPLY									
Operating Voltage Range			-	2.1	2.1	2.1	2.1	V	Min
Operating Voltage Nange			-	5.5	5.5	5.5	5.5	V	Max
Power Supply Rejection	PSRR	$V_S = +2.5V \text{ to } +5.5V$	91	74	72	72	68	dB	Min
Ratio	i OIXIX	$V_{CM} = (-V_S) + 0.5V$	ופ	, 4	14 12	12	00	aв	IVIIII
Quiescent	I_{Q}	I _{OUT} = 0	1.1	1.5	1.65	1.7	1.85	mA	Max
Current/Amplifier	iQ	1001 - 0	1.1	1.5	1.00	1.7	1.00	111/	iviax

REV1.0 - FEB 2020 RELEASED -

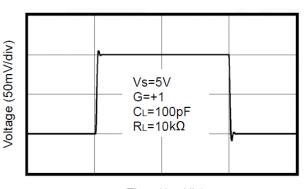

	Тур			Min/Max Over Temperature					
Parameter	Symbol	Conditions	+25℃	+25℃		to	-40°C to 125°C	Units	Min / Max
DYNAMIC PERFORMAN	CE								
Gain-Bandwidth Product	GBP	$R_L = 10k\Omega$, $C_L = 100pF$	11	-	ı	-	1	MHz	Тур
Phase Margin	φο	$R_L = 10k\Omega$, $C_L = 100pF$	51	1	-	1	-	Degrees	Тур
Full Power Bandwidth	BWP	< 1% distortion, $R_L = 600\Omega$	400	-	1	-	1	kHz	Тур
Slew Rate	SR	G = +1, 2V Step, $R_L = 10$ k $Ω$	9	-	-	-	-	V/µs	Тур
Settling Time to 0.1%	ts	G = +1, 2V Step, $R_L = 600Ω$	0.3	-	-	-	-	μs	Тур
Overload Recovery Time		V_{IN} ·Gain = V_{S} , R_{L} = 600Ω	1.5	-	ı	-	1	μs	Тур
NOISE PERFORMANCE									
Voltage Noise Density	en	f = 1kHz	11.5	-	-	-	-	nV / √Hz	Тур
		f = 10kHz	8	-	-	-	-	nV / √Hz	Тур

REV1.0 - FEB 2020 RELEASED - - 5 -

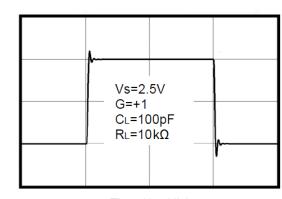
TYPICAL PERFORMANCE CHARACTERISTIC


At V_S =5V, T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

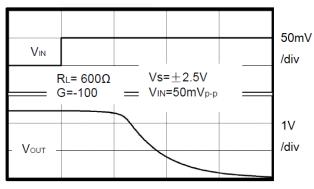
1. Large-Signal Step Response


Time (1µs/div)

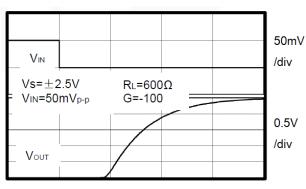
2. Large-Signal Step Response


Time (1µs/div)

3. Small-Signal Step Response


Time (1µs/div)

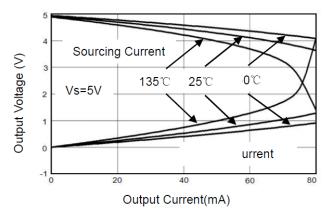
4. Small-Signal Step Response


Time (1µs/div)

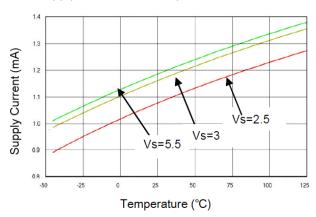
5. Positive Overload Recovery

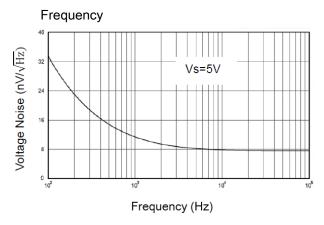
Time (2µs/div)

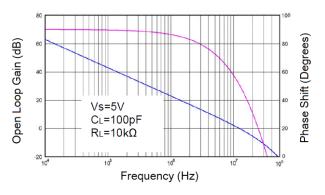
6. Negative Overload Recovery

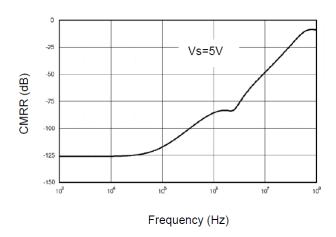

Time (2µs/div)

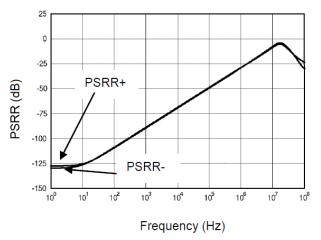
REV1.0 - FEB 2020 RELEASED - - 6 -


Voltage (50mV/div)


7. Output Voltage Swing vs. Output Current


8. Supply Current vs. Temperature


9. Input Voltage Noise Spectral Density vs.


10. Open Loop Gain, Phase Shift vs. Frequency

11. CMRR vs. Frequency

12. PSRR vs. Frequency

REV1.0 - FEB 2020 RELEASED - - 7 -

DETAILED INFORMATION

Size

AO1376 op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the AO1376 packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

AO1376 operates from a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 1.1mA per channel) of AO1376 will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

AO1376 operate under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40°C to +125°C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime

Rail-to-Rail Input

The input common-mode range of AO1376 extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of AO1376 can typically swing to less than 2mV from supply rail in light resistive loads (>100k Ω), and 15mV of supply rail in moderate resistive loads (10k Ω).

REV1.0 - FEB 2020 RELEASED - - 8 -

Capacitive Load Tolerance

The AO1376 is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 1. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

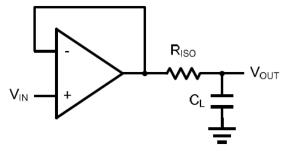


Figure 1. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. However, if there is a resistive load $R_{\rm L}$ in parallel with the capacitive load, a voltage divider (proportional to $R_{\rm ISO}/R_{\rm L}$) is formed, this will result in a gain error.

The circuit in Figure 2 is an improvement to the one in Figure 1. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

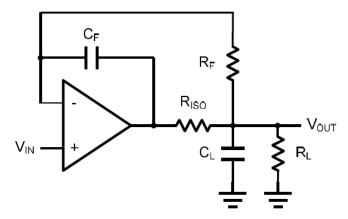


Figure 2. Indirectly Driving a Capacitive Load with DC Accuracy

REV1.0 - FEB 2020 RELEASED - - 9 -

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 3. shown the differential amplifier using AO1376.

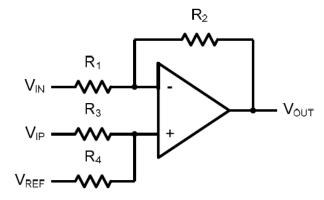


Figure 3. Differential Amplifier

$$V_{OUT} = \Big(\left(\frac{R_1 + R_2}{R_3 + R_4} \right) \frac{R_4}{R_1} V_{IN} - \frac{R_2}{R_1} V_{IP} + \left(\frac{R_1 + R_2}{R_3 + R_4} \right) \frac{R_3}{R_1} V_{REF}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{OUT} = \frac{R_2}{R_1} (V_{IP} - V_{IN}) + V_{REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 4. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

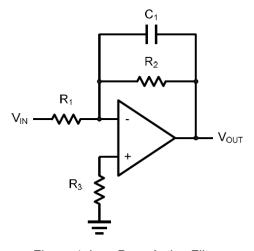
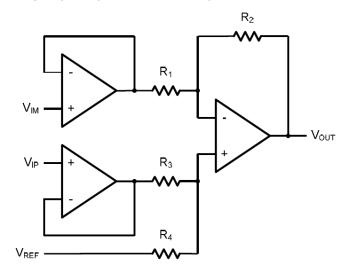
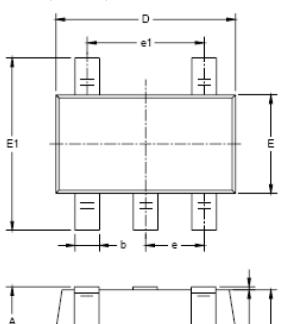


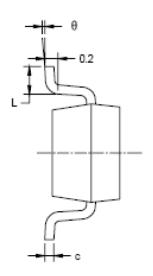
Figure 4. Low Pass Active Filter

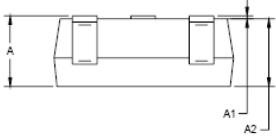
REV1.0 - FEB 2020 RELEASED - - 10 -

Instrumentation Amplifier

The triple AO1376 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 5. The amplifier in Figure 5 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

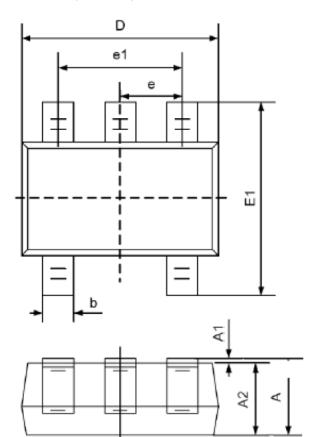



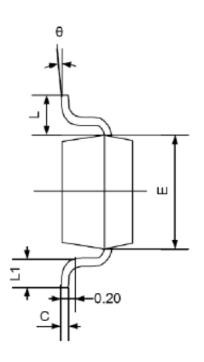

Figure 5. Instrument Amplifier


REV1.0 - FEB 2020 RELEASED - - 11 -

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

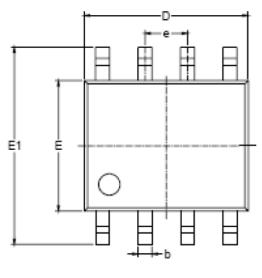


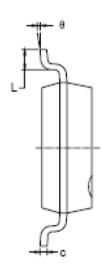


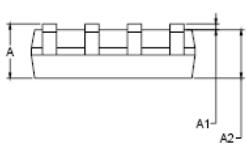
Cymahal	Millim	neters	Inches			
Symbol	Min.	Max.	Min.	Max.		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
Е	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950	BSC	0.037 BSC			
e1	1.900	BSC	0.075 BSC			
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

REV1.0 - FEB 2020 RELEASED - - 12 -

Dimension in SC70-5 (Unit: mm)




Or mak al	Millim	neters	Inches		
Symbol	Min.	Max.	Min.	Max.	
А	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
Е	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650) TYP	0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525	REF	0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	


- 13 -REV1.0 - FEB 2020 RELEASED -

Dimension in SOP8 (Unit: mm)

Cymah al	Millim	neters	Inc	hes		
Symbol	Min.	Max.	Min.	Max.		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27	BSC	0.050 BSC			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

- 14 -REV1.0 - FEB 2020 RELEASED -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - FEB 2020 RELEASED - - 15 -