

DESCRIPTION

The AO1317 is single micro-power, low-voltage, zero-drift CMOS operational amplifiers. Feature rail-to-rail input and output swings and low quiescent current (25uA, typ. at 5V) combined with a wide gain-bandwidth product of 350kHz and very low noise (70nV/ \sqrt{Hz} at 1kHz) makes AO1317 very attractive for a variety of battery-power applications.

The AO1317 amplifiers offer impressive bandwidth (350kHz), zero-drift over temperature, low bias current (20pA), very low offset voltage ($10\mu V$ max) makes AO1317 to be a perfect choice for low offset, low power consumption and high impedance applications.

The AO1317 provides RF/EMI rejection filter, high electrostatic discharge (ESD) protection (6-kV HBM) and excellent CMRR without the crossover associated with traditional complementary input stages further to superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.

The AO1317 is optimized for operation at voltages as low as +1.8V and up to +5.5V and are specified over the extended industrial temperature range (-40°C to +125°C).

The AO1317 is available in SOT-25 and SC70-5 packages.

ORDERING INFORMATION

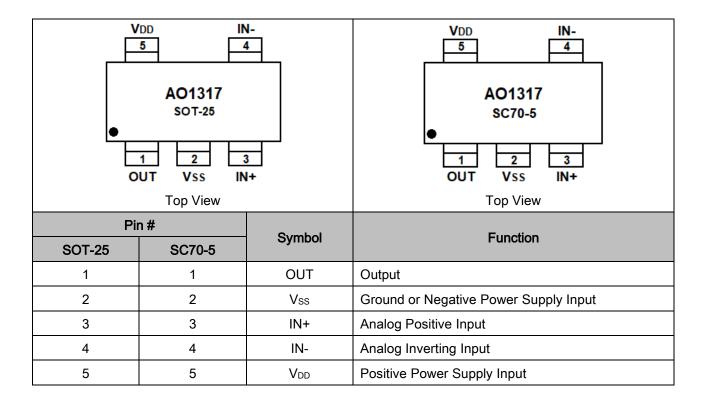
Package Type	Part Number			
SOT-25	E5	AO1317E5R		
SPQ: 3,000pcs/Reel	ED	AO1317E5VR		
SC70-5	C5	AO1317C5R		
SPQ: 3,000pcs/Reel	65	AO1317C5VR		
Note	V: Halogen free Package			
note	R: Tape & Reel			
AiT provides all RoHS products				

FEATURES

- Low Noise: 1.1µVpp (0Hz-10Hz)
- CMRR: 100dB (V_{CM} = 0V to 5V @25°C)
- Low Quiescent Current: 25µA/ch (Typ.)
- Wide Supply Range: 1.8V to 5.5V
- Zero Drift: 0.05µV/°C (Typ.)
- Wide Gain-Bandwidth: 350kHz (Typ. @25°C)
- Low Input Bias Current: 20pA (Typ. @25°C)
- Low Offset Voltage: 10uV (Max. @25°C)
- Internal RF Anti-EMI Filter
- Operating Temperature: -45°C ~ +125°C
- Rail-to-Rail Input / Output
- Available in SOT-25 and SC70-5 packages

APPLICATION

- Battery-Powered Instrumentation
- Portable Devices
- Medical Instruments
- Handheld Test Equipment
- Transducer Application
- Temperature Measurements
- Electronics Scales


TYPICAL APPLICATION

SOT-25/ SC70-5

PIN DESCRIPTION

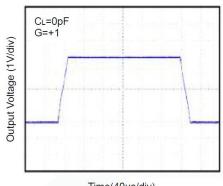
ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (VDD to VSS)	-0.5V ~ +7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V ~ V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V ~ +7V		
Operating Temperature Range	-45°C ~ 125°C		
Junction Temperature	+160°C		
Storage Temperature Range	-55°C ~ 150°C		
Lead Temperature (soldering, 10sec)	+260°C		
Package Thermal Resistance (T _A =+25°C)			
θ _J A, SOT-25	190°C/W		
θ _{JA} , SC70-5	333°C/W		
ESD Susceptibility			
НВМ	6kV		
ММ	400V		

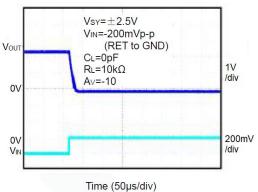
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

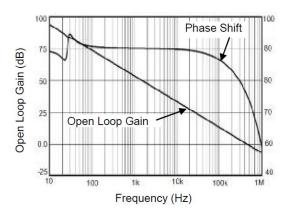
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
INPUT CHARACTERISTIC	S						
Input Offset Voltage	Vos	T=25℃	-	2	10	μV	
		-45℃ <t<125℃< td=""><td>-</td><td>-</td><td>15</td></t<125℃<>	-	-	15		
Input Bias Current	lв	T=25℃	-	20	200	pА	
		-45℃ <t<125℃< td=""><td>-</td><td>-</td><td>2000</td></t<125℃<>	-	-	2000		
	los	T=25℃	-	10	200	рА	
Input Offset Current		-45°C <t<125°c< td=""><td>-</td><td>-</td><td>2000</td></t<125°c<>	-	-	2000		
Common-Mode Rejection		V_{CM} = 0V to 5V, T=25°C	100	110	-	dB	
Ratio	CMRR	V _{CM} = 0V to 5V, -45°C <t<125°c< td=""><td>90</td><td>-</td><td>-</td></t<125°c<>	90	-	-		
Large Signal Voltage	٨	V _o = 0.3V to 4.7V, T=25°C	120	145	-	dB	
Gain	Avo	V _o = 0.3V to 4.7V, -45°C <t<125°c< td=""><td>110</td><td>-</td><td>-</td></t<125°c<>	110	-	-		
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$	-45°C <t<125°c< td=""><td>-</td><td>50</td><td>70</td><td>nV/°C</td></t<125°c<>	-	50	70	nV/°C	
OUTPUT CHARACTERIST	ICS						
	Vон	R_L = 100k Ω to – V _S	-	4.998	-	V	
Output Voltage High		R_L = 10k Ω to - V _S	-	4.994	-		
	Vol	R_L = 100k Ω to + V _S	-	5	-		
Output Voltage Low		R_L = 10k Ω to + V _S	-	20	-	mV	
Short Circuit Limit, ISOURCE	lsc	R _L =10Ω to - V _S , T=25°C	15	20	-		
		R _L =10Ω to - V _S , -45°C <t<125°c< td=""><td>14</td><td>-</td><td>-</td><td>mA</td></t<125°c<>	14	-	-	mA	
Chart Circuit Limit Jaink	lsc	R _L =10Ω to - V _S , T=25°C	15	20	-	mA	
Short Circuit Limit, Isink		R _L =10Ω to - V _S , -45°C <t<125°c< td=""><td>14</td><td>-</td><td>-</td></t<125°c<>	14	-	-		
POWER SUPPLY							
Power Supply Rejection		Vs = 2.5V to 5.5V, T=25°C	110	115	-	-ID	
Ratio	PSRR	V _S = 2.5V to 5.5V, -45°C <t<125°c< td=""><td>100</td><td>-</td><td>-</td><td colspan="2">dB</td></t<125°c<>	100	-	-	dB	
Quiescent Current	ΙQ	Vo = 0V, T=25°C	-	25	40		
		V ₀ = 0V, -45°C <t<125°c< td=""><td>-</td><td>-</td><td>50</td><td>μA</td></t<125°c<>	-	-	50	μA	
DYNAMIC PERFORMANC	E						
Gain-Bandwidth Product	GBP	G = +100	-	350	-	kHz	
Slew Rate	SR	$R_L = 10k\Omega$	-	0.2	-	V/µs	
NOISE PERFORMANCE							
Voltage Noise	e _n p-p	0Hz to 10Hz	-	1.1	-	μV _{P-P}	
Voltage Noise Density	en	f = 1kHz	-	70	-	nV/ √Hz	

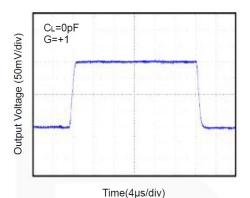

At V_S=5V, T_A = +25°C, V_{CM} = V_S/2, R_L = 10K Ω , unless otherwise noted.

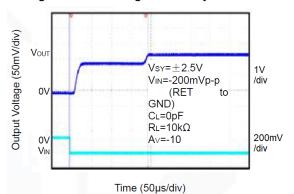
TYPICAL PERFORMANCE CHARACTERISTICS

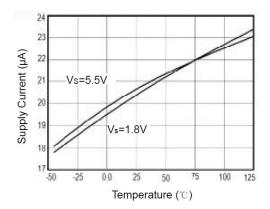

 T_A =+25°C, V_S =5V, R_L =10k Ω connected to V_S /2 and V_{OUT} = V_S /2, unless otherwise noted.

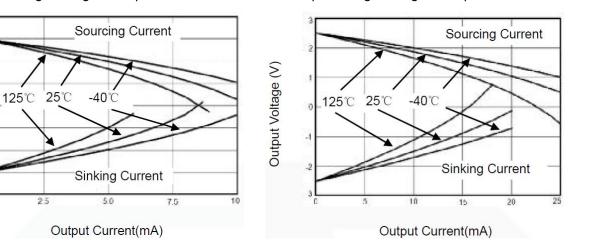
1. Large Signal Transient Response




3. Positive Overvoltage Recovery


5. Open Loop Gain, Phase Shift vs. Frequency


2. Large Signal Transient Response


4. Negative Overvoltage Recovery

6. Supply Current vs. Temperature

7. Output Voltage Swing vs. Output Current at +3V 8.

2.0

1.5 1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

õ

Output Voltage (V)

Output Voltage Swing vs. Output Current at +5V

AO1317

OPAMPLIFIER

DETAILED INFORMATION

Size

AO1317 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the AO1317 series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

AO1317 series operates from a single 1.8V to 5.5V supply or dual ±0.9V to ±2.75V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 25uA per channel) of AO1317 series will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

AO1317 series operate under wide input supply voltage (1.8V to 5.5V). In addition, all temperature specifications apply from -45°C to +125°C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime

Rail-to-Rail Input

The input common-mode range of AO1317 series extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of AO1317 series can typically swing to less than 5mV from supply rail in light resistive loads (>100k Ω), and 100mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The AO1317 family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain.

Figure 1. shown a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

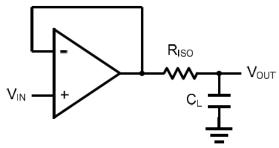


Figure 1. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 2. is an improvement to the one in Figure 1. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F. This in turn will slow down the pulse response.

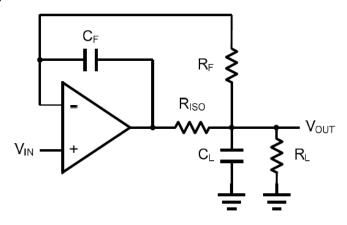


Figure 2. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 3. shown the differential amplifier using AO1317.

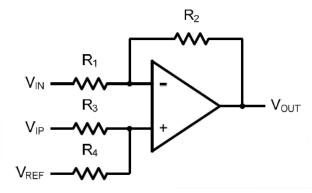


Figure 3. Differential Amplifier

 $V_{OUT} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{IN} - \frac{R_2}{R_1} V_{IP} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{REF}$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{OUT} = \frac{R_2}{R_1} (V_{IP} - V_{IN}) + V_{REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 4. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_c=1/(2\pi R_3 C_1)$.

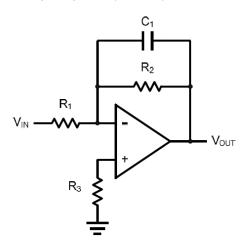
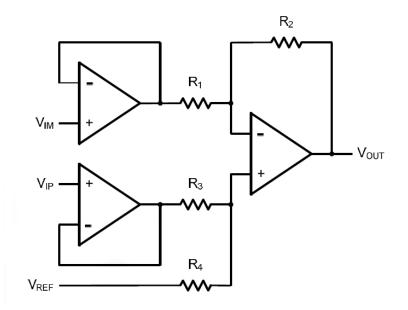
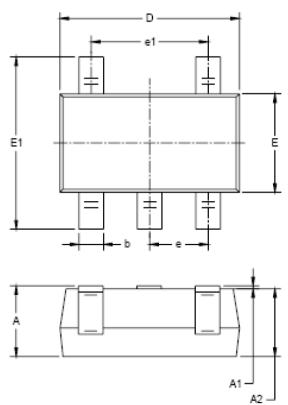
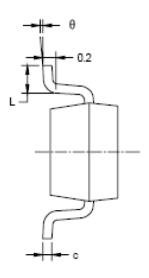


Figure 4. Low Pass Active Filter

Instrumentation Amplifier

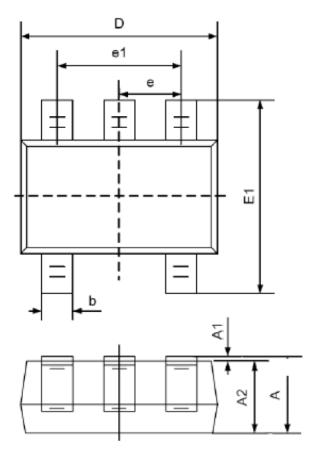
The triple AO1317 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 5. The amplifier in Figure 5 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.

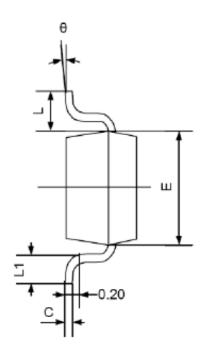




Figure 5. Instrument Amplifier

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)





Symbol	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.900 BSC		0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Dimension in SC70-5 (Unit: mm)

Symbol	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 TYP		0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.