DESCRIPTION

The AO1313 is single channel op amps represents a new generation of low cost, general purpose, micro-power operational amplifiers. Feature rail-to-rail input and output swings and low quiescent current (75uA, typ. at 5V) combined with a wide gain-bandwidth product of 1MHz and very low noise $(27nV/\sqrt{Hz}\$ at 1kHz) , a slew rate of 0.8V/µs makes AO1313 very attractive for a variety of battery-power applications that require an optimal performance in low voltage and low noise systems.

AO1313 provides rail-to-rail output swing into heavy loads, RF/EMI rejection filter and high electrostatic discharge (ESD) protection (6-kV HBM). The AO1313 input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV.

The AO1313 are optimized for operation at voltages as low as +1.8V and up to +6V and are specified over the extended industrial temperature range (-40°C to +125°C).

The AO1313 is available in SOT-25 and SC70-5 packages.

ORDERING INFORMATION

Package Type	Part Number			
SOT-25	E5	AO1313E5R-Z		
SPQ: 3,000pcs/Reel	ES	AO1313E5VR-Z		
SC70-5	C5	AO1313C5R-Z		
SPQ: 3,000pcs/Reel	C5	AO1313C5VR-Z		
Z: Pin Type(See Pin Description				
Note	V: Halogen free Package			
	R: Tape & Reel			
AiT provides all RoHS products				

FEATURES

- Low Quiescent Current: 75µA/ch (Typ.)
- Wide Supply Range: 1.8V to +6V
- Low Noise: 27nV/ √Hz at 1kHz
- Gain-Bandwidth Product: 1MHz (Typ.)
- Low Input Bias Current: 1pA (Typ.)
- Low Offset Voltage: 3.5mV (Max.)
- Internal RF / Anti-EMI Filter
- Rail-to-Rail Input / Output
- Operating Temperature: -40°C ~ +125°C
- Available in SOT-25 and SC70-5 packages

APPLICATION

- Battery-Power Instruments:
 - -Consumer, Industrial, Medical
 - -Notebooks, Portable Media Players
- Sensor Signal Conditioning:
 - -Loop-Powered
 - -Notebooks, Portable Media Players
- Wireless Sensors:
 - -Home Security
 - -Remote Sensing
 - -Wireless Metering
- Others:
 - -ASIC Input or Output Amplifier
 - -Sensor Interface
 - -Smoke Detectors
 - -Audio Output
 - -Piezoelectric Transducer Amplifier

TYPICAL APPLICATION

- JAN 2020 RELEASED, JUL 2020 UPDATED -

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (V _{DD} to V _{SS})	-0.5V ~ +7.5V
Analog Input Voltage (IN+ or IN-)	$Vss-0.5V \sim V_{DD}+0.5V$
PDB Input Voltage	Vss-0.5V ~ +7V
Operating Temperature Range	-40°C ~ 125°C
Junction Temperature	+160°C
Storage Temperature Range	-55°C ~ 150°C
Lead Temperature (soldering, 10sec)	+260°C
Package Thermal Resistance (T _A =+25°C)	
θ _{JA} , SOT-25	190°C/W
θ _{JA} , SC70-5	333°C/W
ESD Susceptibility	
НВМ	6kV
MM	400V

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

At $V_S = +5V$, $R_L = 100k\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted

	Symbol	Conditions	Typ Min/Max Over Temperature				
Parameter			+25℃	+25℃	-40°C to 85°C	Unit	Min / Max
INPUT CHARACTERISTIC	cs						
Input Offset Voltage	Vos	V _{CM} = V _S /2	0.8	3.5	5.6	mV	Max
Input Bias Current	lв		1	-	-	pА	Тур
Input Offset Current	los		1	-	-	pА	Тур
Input Common Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6	-	-	>	Тур
Common Mode Rejection Ratio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	70	62	62	dB	Min
		$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	68	56	55	dB	Min
Open-Loop Voltage Gain	Aol	$R_L = 5k\Omega$, $V_O = +0.1V$ to +4.9V	80	70	70	dB	Min
		$R_L = 10k\Omega$, $V_O = +0.1V$ to +4.9V	100	94	85	dB	Min
Input Offset Voltage Drift	ΔV _{OS} /Δτ		2.7	-	-	μV/°C	Тур
OUTPUT CHARACTERIS	TICS						
	Vон	R _L = 100kΩ	4.997	4.980	4.970	V	Min
Output Voltage Swing	Vol	R _L = 100kΩ	5	20	30	mV	Max
from Rail	V _{OH}	$R_L = 10k\Omega$	4.992	4.970	4.960	V	Min
	Vol	$R_L = 10k\Omega$	8	30	40	mV	Max
Output Current	Isource	$R_L = 10\Omega$ to $V_S/2$	84	60	45	mA	Min
	I _{SINK}		75	60	45		
POWER SUPPLY							
Operating Voltage			-	1.8	1.8	V	Min
Range			-	6	6	V	Max
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V \text{ to } +6V,$ $V_{CM} = +0.5V$	82	60	58	dB	Min
Quiescent Current/Amplifier	lα		75	110	125	μΑ	Max

	Symbol	Conditions	Тур	Min/Max Over Temperature			
Parameter			+25°C	+25°C	-40°C to 85°C	Unit	Min / Max
DYNAMIC PERFORMANO	CE (C _L = 10	00pF)					
Gain-Bandwidth Product	GBP		1	-	-	MHz	Тур
Slew Rate	SR	G = +1, 2V Output Step	0.8	-	-	V/µs	Тур
Settling Time to 0.1%	t s	G = +1, 2V Output Step	5.3	-	-	μs	Тур
Overload Recovery Time		V _{IN} ·Gain = V _S	2.6	-	-	μs	Тур
NOISE PERFORMANCE							
Voltage Noise Density	e n	f = 1kHz	27	-	_	nV/ √Hz	Тур
		f = 10kHz	20	-	-	nV/ √Hz	Тур

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S =5V, R_L = 100k Ω connected to V_S /2, and V_{OUT} = V_S /2, unless otherwise noted.

1. Large Signal Transient Response

Time (10µs/div)

2. Small Signal Transient Response

Time (2µs/div)

3. CMRR vs. Frequency

5. Supply Current vs. Temperature

4. PSRR vs. Frequency

6. Overload Recovery Time

Time(2µs/div)

7. Output Voltage Swing vs. Output Current

9. Input Voltage Noise Spectral Density vs.

8. Output Voltage Swing vs. Output Current

10. Open Loop Gain, Phase Shift vs. Frequency

DETAILED INFORMATION

Size

AO1313 op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the AO1313 packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

AO1313 operates from a single 1.8V to 6V supply or dual ± 0.9 V to ± 3 V supplies. For best performance, a 0.1 μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1 μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 75µA per channel) of AO1313 will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

AO1313 operates under wide input supply voltage (1.8V to 6V). In addition, all temperature specifications apply from -40°C to +125°C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime

Rail-to-Rail Input

The input common-mode range of AO1313 extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of AO1313 can typically swing to less than 10mV from supply rail in light resistive loads (>100k Ω), and 60mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The AO1313 is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain.

Figure 1. shown a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

Figure 1. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. However, if there is a resistive load $R_{\rm L}$ in parallel with the capacitive load, a voltage divider (proportional to $R_{\rm ISO}/R_{\rm L}$) is formed, this will result in a gain error.

The circuit in Figure 2. is an improvement to the one in Figure 1. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

Figure 2. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 3. shown the differential amplifier using AO1313.

Figure 3. Differential Amplifier

$$V_{OUT} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{IN} - \frac{R_2}{R_1} V_{IP} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{REF}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{OUT} = \frac{R_2}{R_1} (V_{IP} - V_{IN}) + V_{REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 4. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

Figure 4. Low Pass Active Filter

Instrumentation Amplifier

The triple AO1313 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 5. The amplifier in Figure 5. is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

Figure 5. Instrument Amplifier

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Millim	neters	Inches			
	Min.	Max.	Min.	Max.		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
Е	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950	BSC	0.037 BSC			
e1	1.900	BSC	0.075 BSC			
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

Dimension in SC70-5 (Unit: mm)

Cymphol	Millim	neters	Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
Е	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650	TYP	0.026	STYP	
e1	1.200	1.400	0.047	0.055	
L	0.525	REF	0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.