AiT Semiconductor Inc. www.ait-ic.com

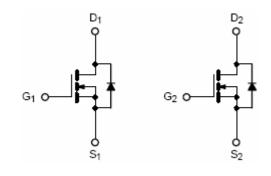
DESCRIPTION

The AM9926 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

AM9926 is available in SOP8 package.

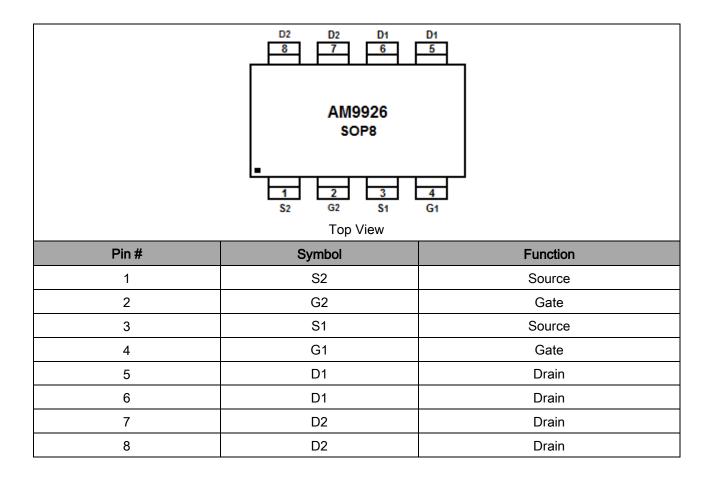
ORDERING INFORMATION

Package Type	Part Number			
SOP8	M8	AM9926M8R		
		AM9926M8VR		
	V: Halogen free Package R: Tape & Reel			
Note				
	SPQ:2,500pcs/Reel			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				


FEATURES

- V_{DS}=20V, I_D=6A
 R_{DS(ON)}< 30mΩ @ V_{GS}=4.5V
 R_{DS(ON)}< 40mΩ @ V_{GS}=2.5V
- High density cell design for ultra low RDSON
- Fully characterized Avalanche voltage and current
- Available in SOP8 package.

APPLICATION


- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

PIN DESCRIPTION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

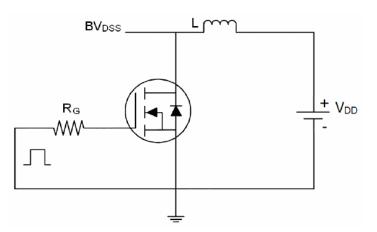
$T_A = 25^{\circ}C$, unless otherwise noted	
V _{DS} , Drain-Source Voltage	20V
V _{GS} , Gate-Source Voltage	±12V
I _D , Drain Current-Continuous	6A
I _D (100°C), Drain Current-Continuous(T _C =100°C)	3.8A
IDM, Pulsed Drain Current	25A
P _D , Maximum Power Dissipation	1.25W
TJ, TSTG, Operating Junction and Storage Temperature Range	-55°C~150°C
Thermal Characteristic	
R _{0JA} , Thermal Resistance, Junction-to-Ambient NOTE1	100°C/W
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the dev	vice. These are stress ratings only and

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE1: Surface Mounted on FR4 Board, $t \le 10$ sec.

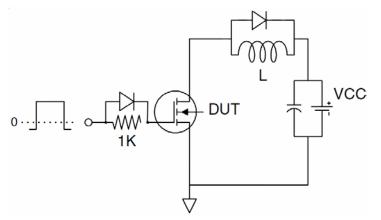
ELECTRICAL CHARACTERISTICS

$T_A = 25^{\circ}C$, unless otherwise noted

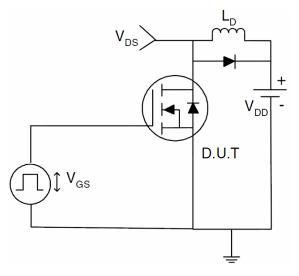
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Off Characteristics						
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V,I _{DS} =250µA	20	22	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	lgss	V _{GS} =±12V, V _{DS} =0V	-	-	±100	nA
On Characteristics NOTE 2						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _{DS} =250µA	0.5	-	1.2	V
Drain-Source On-state	_	V _{GS} =4.5V,I _{DS} =6A	-	26	30	
Resistance	Rds(on)	V _{GS} =2.5V,I _D =5A	-	36	40	mΩ
Forward Transconductance	g fs	V _{DS} =5V,I _D =6A	20	-	-	S
Dynamic Characteristics NOTE3						
Input Capacitance	Ciss		-	640	-	pF
Output Capacitance	Coss	V _{DS} =10V, V _{GS} =0V, F=1.0MHz	-	140	-	
Reverse Transfer Capacitance	Crss		-	80	-	
Switching Characteristics NOTE3						
Turn-on Delay Time	t _{D(ON)}	V_{DD} =10V, I_{DS} =1A, V_{GEN} =4.5V, R_{G} =6 Ω	-	8	-	ns
Turn-on Rise Time	t _R		-	9	-	
Turn-Off Delay Time	td(off)		-	15	-	
Turn-Off Fall Time	t⊧		-	4	-	
Total Gate Charge	QG	- V _{DS} =10V, I _D =3A - V _{GS} =4.5V	-	10	-	
Gate-Source Charge	Q_{GS}		-	1.5	-	nC
Gate-Drain Charge	\mathbf{Q}_{GD}		-	1.6	-	
Drain-Source Diode Characteristics	5					
Diode Forward Voltage NOTE2	V _{SD}	V _{GS} =0V, I _S =1.7A	-	-	1.2	V
Diode Forward Current NOTE1	ls		-	-	6	Α


NOTE3: Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.

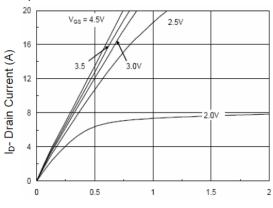
NOTE4: Guaranteed by design, not subject to production

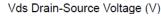


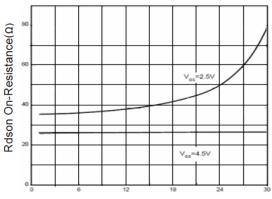
TEST CIRCUIT


1. EAs test Circuits

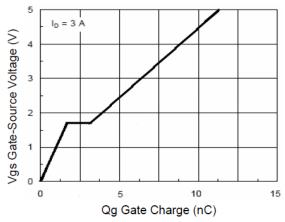
2. Gate charge test Circuit


3. Switch Time Test Circuit

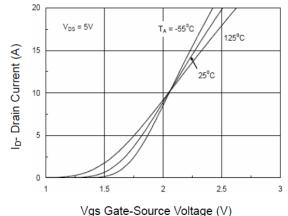


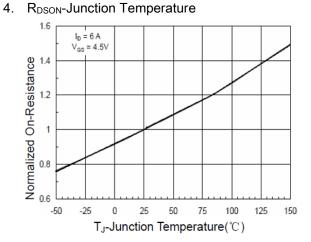

TYPICAL CHARACTERISTICS

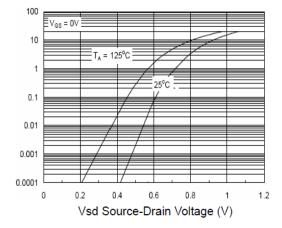
1. Output Characteristics



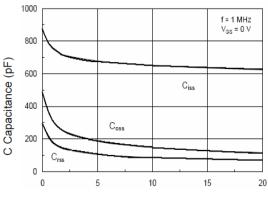
3. R_{DSON}- Drain Current



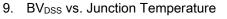

5. Gate Charge

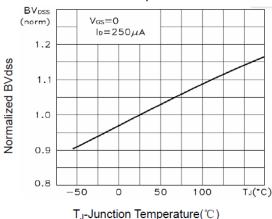

2. Transfer Characteristics

vgs Gale-Source vollage

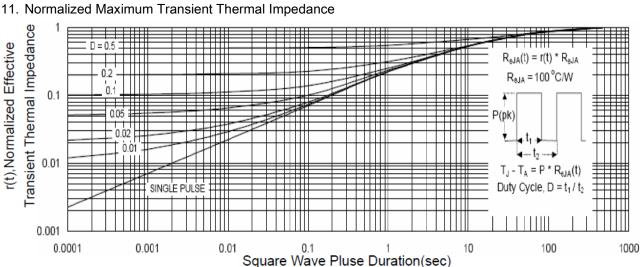


6. Source- Drain Diode Forward

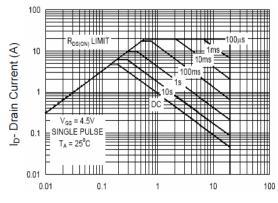




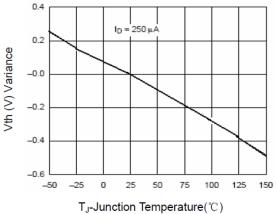
7. Capacitance vs. VDS



Vds Drain-Source Voltage (V)

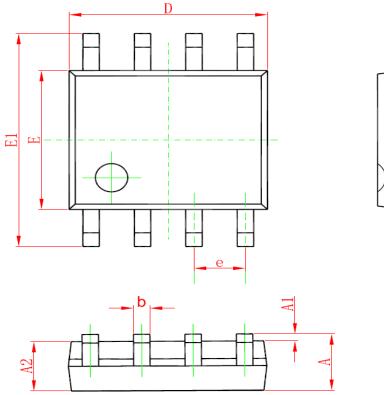


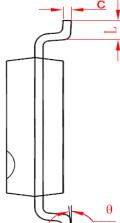
11. Normalized Maximum Transient Thermal Impedance



Safe Operation Area 8.

Vds Drain-Source Voltage (V)


10. V_{GS(th)} vs. Junction Temperature



PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max	
А	1.350	1.750	
A1	0.100	0.250	
A2	1.350	1.550	
b	0.330	0.510	
С	0.170	0.250	
D	4.700	5.100	
E	3.800	4.000	
E1	5.800	6.200	
е	1.270(BSC)		
L	0.400	1.270	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.