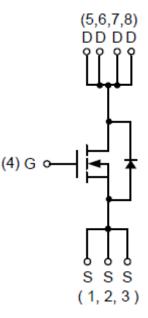


DESCRIPTION

The AM7520 is available in DFN8(3.3x3.3) package.

ORDERING INFORMATION

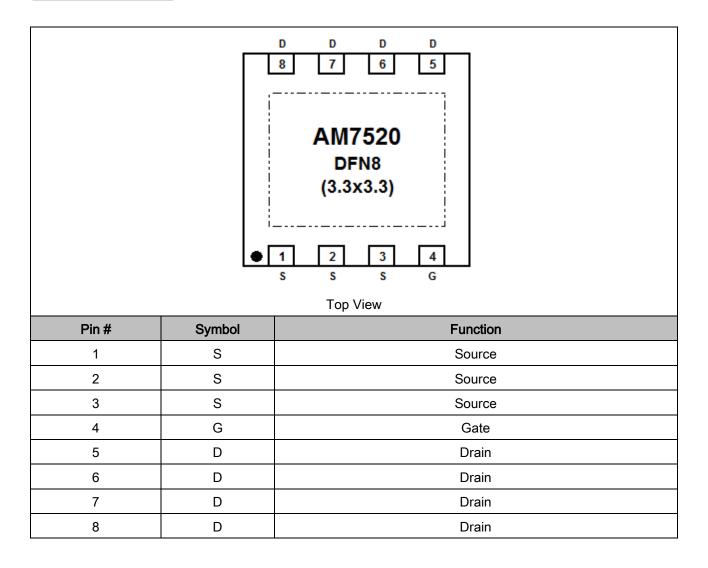
Package Type	Part Number			
DFN8	J8	AM7520J8R		
(3.3x3.3)	JO	AM7520J8VR		
	V: Halogen free Package			
Note	R: Tape & Reel			
	SPQ: 3,000pcs/ Reel			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				


FEATURES

- 30V/50A,
 - R_{DS(ON)} = 1.8mΩ(max.) @ V_{GS} =10V
 - $R_{DS(ON)} = 3.1 m\Omega(max.) @ V_{GS} = 4.5 V$
- 100% UIS + R_G Tested
- Avalanche Rated
- Reliable and Rugged
- Available in DFN8(3.3x3.3) package.

APPLICATION

 Power Management in Notebook Computer, Portable Equipment and Battery Powered Systems.


PIN DESCRIPTION

N-Channel MOSFET

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}C$, unless Otherwise Noted		
V _{DSS} , Drain-Source Voltage	30V	
V _{GSS} , Gate-Source Voltage		±20V
T _J , Maximum Junction Temperature		150°C
T _{STG} , Storage Temperature Range		-55°C~ 150°C
Is, Diode Continuous Forward Current	Tc=25°C	50A NOTE1
	Tc=25°C	50A NOTE1
I _D , Continuous Drain Current	Tc=100°C	50A
IDM, Pulsed Drain Current	Tc=25°C	200A NOTE2
	Tc=25°C	62.5W
P _D , Maximum Power Dissipation	T _C =100°C	25W
R _{0JC} , Thermal Resistance-Junction to Case	Steady State	2°C/W
	T _A =25°C	24A
I _D , Continuous Drain Current	T _A =70°C	19A
	T _A =25°C	1.78W
P _D , Maximum Power Dissipation	T _A =70°C	1.14W
	t ≤ 10s	35°C/W
$R_{\theta JA}$, Thermal Resistance-Junction to Ambient	Steady State ^{NOTE3}	70°C/W
IAS ^{NOTE4} , Avalanche Current, Single Pulse	L=0.1mH	50A
EAS ^{NOTE4} , Avalanche Energy, Single Pulse	L=0.1mH	125mJ

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Package is limited by 50A.

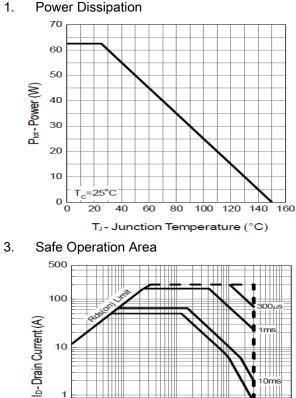
NOTE2: Pulse width is limited by maximum junction temperature.

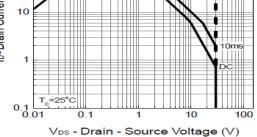
NOTE3: Surface Mounted on 1in² pad area, t ≤ 999s.

NOTE4: UIS tested and pulse width is limited by maximum junction temperature 150°C (initial temperature T_J = 25°C).

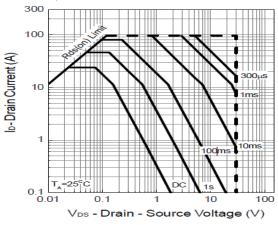
ELECTRICAL CHARACTERISTICS

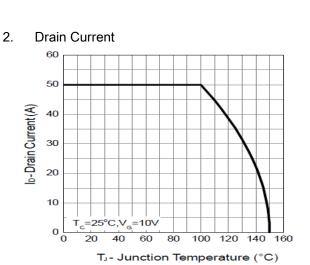
 $T_A = 25^{\circ}C$, unless Otherwise Noted

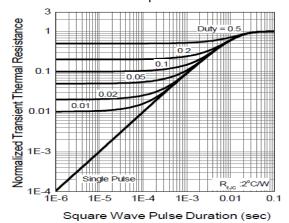

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _{DS} =250µA	30	-	-	V	
Zero Gate Voltage Drain Current	IDSS	V _{DS} =24V, V _{GS} =0V	-	-	1	μA	
		TJ=85°C	-	-	30		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _{DS} =250µA	1.4	1.7	2.5	V	
Gate Leakage Current	lgss	V_{GS} =±20V, V_{DS} =0V	-	-	±100	nA	
Drain Courses On state		V _{GS} =10V, I _{DS} =20A	-	1.5	1.8	mΩ	
Drain-Source On-state	Rds(on) Note5	T _J =125°C	-	2.3	-		
Resistance	NOTES	V _{GS} =4.5V, I _{DS} =20A	-	2.3	3.1		
Forward Transconductance	Gfs	V _{DS} =5V, I _{DS} =20A	-	25	-	S	
Diode Characteristics							
Diode Forward Voltage	V _{SD} NOTE5	I _{SD} =20A, V _{GS} =0V	-	0.8	1.1	V	
Reverse Recovery Time	trr		-	48.9	-	ns	
Charge Time	ta	L	-	24.4	-		
Discharge Time	t _b	l⊧=20A, dlsɒ/dt=100A/µs	-	24.5	-		
Reverse Recovery Charge	Qrr		-	42.8	-	nC	
Dynamic CharacteristicsNOTE6							
Gate Resistance	Rg	V _{GS} =0V, V _{DS} =0V,F=1MHz	-	1	-	Ω	
Input Capacitance	Ciss	V _{GS} =0V,	-	2883	-		
Output Capacitance	Coss	V _{DS} =15V,	-	1857	-	pF	
Reverse Transfer Capacitance	Crss	Frequency=1.0MHz	-	125	-		
Turn-on Delay Time	td(ON)		-	18	33		
Turn-on Rise Time	tr	V _{DD} =15V, R∟=15Ω, I _{DS} =1A, V _{GEN} =10V,	-	10.7	20	ns	
Turn-off Delay Time	td(OFF)	$I_{DS}=IA, V_{GEN}=I0V,$ Rg=6Ω	-	48.3	88		
Turn-off Fall Time	t _f	RG-012	-	71.2	129		
Gate Charge CharacteristicsNOTE6							
Total Gate Charge	Qg	V _{DS} =15V, V _{GS} =4.5V, I _{DS} =20A	-	22	30.8		
Total Gate Charge	Qg		-	42.5	59.5	-0	
Threshold Gate Charge	Qgth	V _{DS} =15V,	-	6.4	9.0	nC	
Gate-Source Charge	Q _{gs}	Vgs=10V,Ids=20A	-	10.6	14.8		
Gate-Drain Charge	Q_{gd}		-	5.1	7.1		


NOTE5: Pulse test; pulse width \leq 300µs, duty cycle \leq 2%.

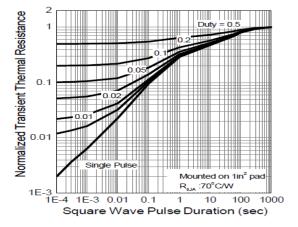
NOTE 6: Guaranteed by design, not subject to production testing.



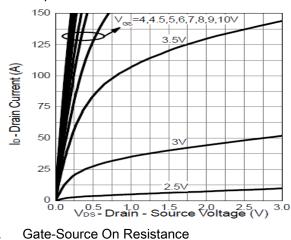

TYPICAL PERFORMANCE CHARACTERISTICS

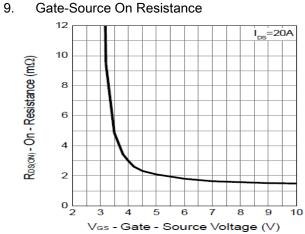


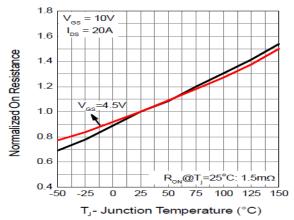
5. Safe Operation Area



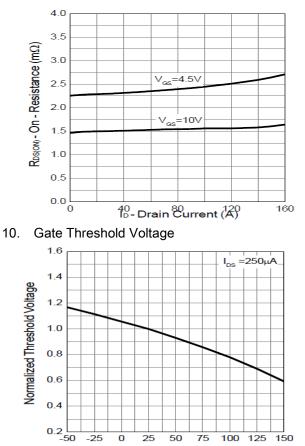
4. Thermal Transient Impedance

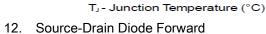


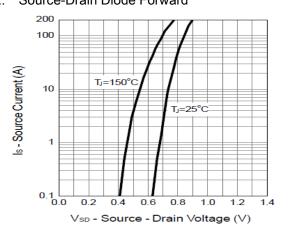

6. Thermal Transient Impedance



7. Output Characteristics






11. Drain-Source On Resistance

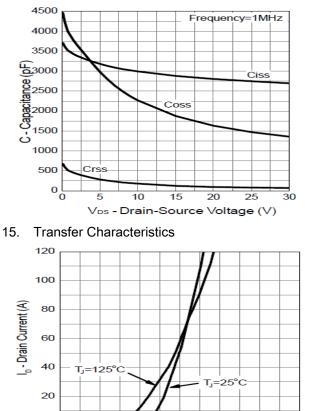
8. Drain-Source On Resistance

13. Capacitance

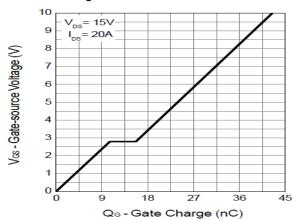
0 L 0

1

2

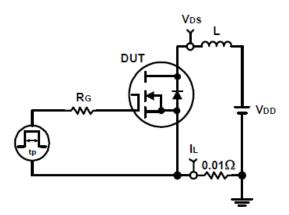

3

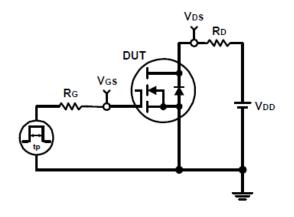
V_{gs} - Gate-Source Voltage (∀)

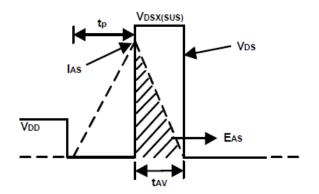

4

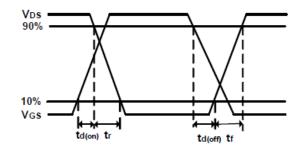
5

6

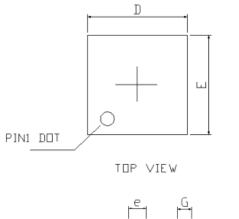

14. Gate Charge

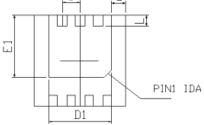


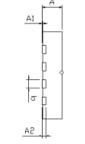

DETAILED INFORMATION


Avalanche Test Circuit and Waveforms

Switching Time Test Circuit and Waveforms

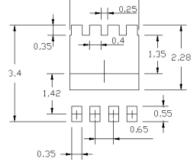






PACKAGE INFORMATION

Dimension in DFN8 (Unit: mm)



SIDE VIEW

2,45

RECOMMENDED LAND PATTERN

Symbol	MILLIMETERS		INCHES		
	Min	Max	Min	Max	
A	0.700	0.800	0.028	0.032	
A1	0.000	0.050	0.000	0.002	
A2	0.100	0.250	0.004	0.010	
b	0.240	0.350	0.009	0.014	
D	3.150	3.400	0.124	0.134	
D1	2.100	2.350	0.083	0.093	
E	3.150	3.400	0.124	0.134	
E1	2.150	2.350	0.850	0.093	
е	0.600	0.700	0.024	0.028	
G	0.475	0.575	0.019	0.023	
L	0.350	0.450	0.014	0.018	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.