

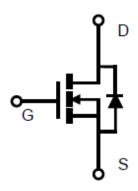
DESCRIPTION

AM6594 is the N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior, fast switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

FEATURES

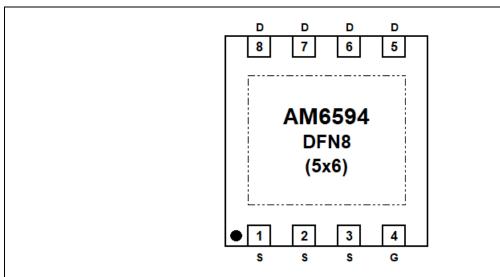
- $V_{DS} = 30V$, $I_D = 50A$ $R_{DS(ON)} = 4.5 m\Omega (Typ.) @V_{GS} = 10V$ $R_{DS(ON)} = 5.6 m\Omega (Typ.) @V_{GS} = 4.5V$
- Low Gate Charge
- 100% UIS and Rg tested
- High power and current handling capability
- Available in a DFN8(5x6) package.

AM6594 is available in a DFN8(5x6) package.


ORDERING INFORMATION

Package Type	Part Number		
DFN8	10	AM6594J8R	
SPQ: 2,500pcs/Reel	J8	AM6594J8VR	
Note	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			

APPLICATION


- Wireless Charging
- DC/DC Converters
- Load Switch

PIN DESCRIPTION

REV1.0 - FEB 2019 RELEASED - -1

PIN DESCRIPTION

Top View

Pin#	Symbol	Function
1	S	Source
2	S	Source
3	S	Source
4	G	Gate
5	D	Drain
6	D	Drain
7	D	Drain
8	D	Drain

REV1.0 - FEB 2019 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise noted

I _A = 25 C, unless otherwise noted			
V _{DSS} , Drain-Source Voltage		30V	
V _{GSS} , Gate-Source Voltage		±20V	
L O Company	Tc=25°C	50A	
I _D , Continuous Drain Current	T _C =100°C	39.1A	
I _{DM} , Pulsed Drain Current ^{NOTE1}	·	124A	
L. O. C. David	T _A =25°C	25.5A	
I _D , Continuous Drain Current	T _A =70°C	20.4A	
D. D Division NOTES	T _A =25°C	6.3W	
P _D , Power Dissipation ^{NOTE2}	T _A =70°C	4W	
I _{AS} , Avalanche Current ^{NOTE1}		35A	
E _{AS} , Single Pulse Avalanche energy L=0.1mH NOTE1,6		61mJ	
D. D Discission NOTE2	Tc=25°C	36.8W	
P _D , Power Dissipation ^{NOTE3}	T _C =100°C	14.7W	
T _J , Operation Junction Temperature		-55°C~+150°C	
T _{STG} , Storage Temperature Range		-55°C~+150°C	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter		Symbol	Тур.	Max.	Units
Thermal Resistance Junction to AmbientNOTE2	t≦10s	Б	-	20	
Thermal Resistance Junction to AmbientNOTE2,4	Steady-State	Reja	-	50	°C/W
Thermal Resistance Junction to Case	Steady-State	Rejc	-	3.4	

NOTE1: Pulsed width limited by maximum junction temperature, $T_{J(MAX)}$ =150°C.

NOTE2: Measure the value in a still air environment at T_A=25°C, using an installation mounted on a 1 in² FR-4 board, maximum junction temperature T_{J/MAX/}=150°C.

NOTE3: Using junction-to-case thermal resistance, dissipation limit in the case of additional heat.

 $NOTE4: T_{J(MAX)} = 150^{\circ}C, using junction-to-case thermal \ resistance \ (R_{\theta JC}) \ is \ more \ useful \ in \ additional \ heat \ sinking \ is \ used.$

NOTE5: The pulse test width is ≤300µs and the duty cycle ≤ 2%.

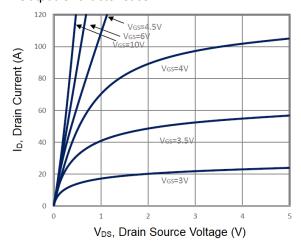
NOTE6: The E_{AS} data shows Maximum, tested and pulse width limited by maximum.

NOTE7: $\mbox{\ensuremath{^{\star}}}$. The maximum rating current is limited by wire bonding.

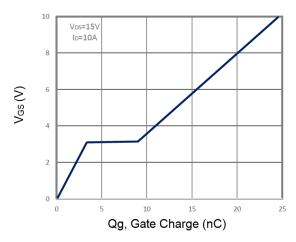
REV1.0 - FEB 2019 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

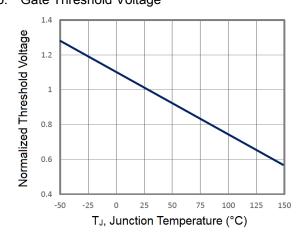
 $T_A = 25^{\circ}C$, unless otherwise noted

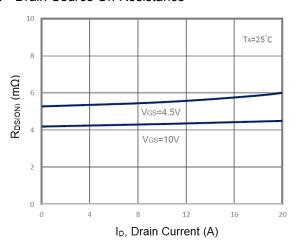

Parameter	Symbol	Conditions	Min	Тур.	Max	Units	
Static Parameters	- Cyminer	T CONTRACTOR		1.76.	inc.x		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _D =250µA	30	_	-	V	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250µA	1.0	1.6	2.5	V	
Gate Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA	
		V _{DS} =30V,V _{GS} =0V					
		T _J =25°C	-	-	1		
Zero Gate Voltage Drain Current	IDSS	V _{DS} =24V,V _{GS} =0V				μΑ	
		T _J =75°C	-	-	10	10	
D i D i NOTE	_	V _{GS} =10V,I _D =20A	-	4.5	6	mΩ	
Drain-source On-Resistance ^{NOTE5}	Rds(on)	V _{GS} =4.5V,I _D =15A	-	5.6	7		
Forward Transconductance	Gfs	V _{DS} =10V, I _D =10A	-	8.8	-	S	
Diode Characteristics							
Diode Forward VoltageNOTE5	V _{SD}	I _S =1A, V _{GS} =0V	-	-	1.0	V	
Continuous Source Current	Is		-	-	50	Α	
Reverse Recovery Time	t _{rr}		_	12	-	ns	
Reverse Recovery Charge	Q _{rr}	I _S =10A, dl/dt=100A/μs	-	3.5	-	nC	
Dynamic and Switching Parameters	3						
Total Gate Charge	Qg		-	24.6	33.4		
Total Gate Charge (4.5V)	Qg	V _{DS} =15V, V _{GS} =10V,	-	12	15	0	
Gate-Source Charge	Qgs	I _D =10A	-	2.8	3.5	nC	
Gate-Drain Charge	Q_{gd}		-	6	8.1		
Input Capacitance	Ciss		-	1280	-		
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V,	-	196	-	рF	
Reverse Transfer Capacitance	Crss	f=1.0MHz	_	162	-		
Gate Resistance	Rg	V _{GS} =0V, V _{DS} =0V,		0.0		-	
		f=1MHZ	-	2.2	-	Ω	
Turn On Time NOTES	t _{d(on)}		-	6.4	12		
Turn-On Time ^{NOTE5}	tr	V _{DD} =15V, V _{GEN} =10V,	_	14	27		
Turn-Off Time ^{NOTE5}	t _{d(off)}	R _G =3.3Ω, I _D =1A	-	32.4	62	ns	
	t f		-	9.2	17		

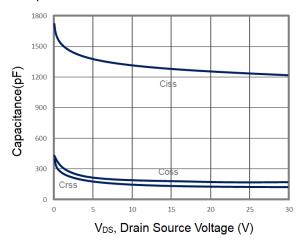
REV1.0 - FEB 2019 RELEASED - -4-

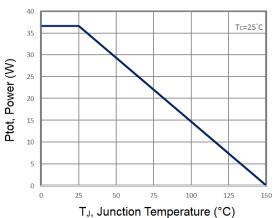


TYPICAL CHARACTERISTICS

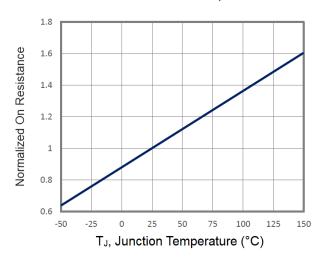

1. Output Characteristics


3. Gate Charge

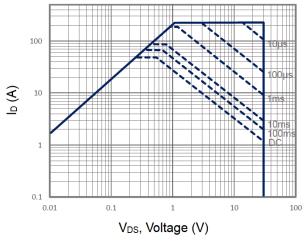

5. Gate Threshold Voltage


2. Drain-Source On Resistance

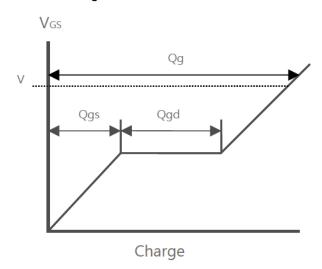
4. Capacitance

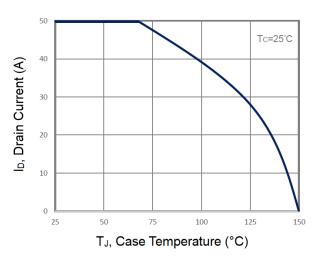


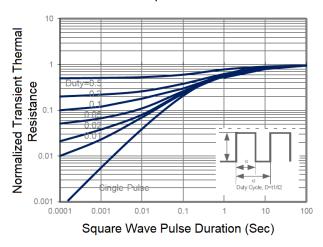
6. Power Dissipation

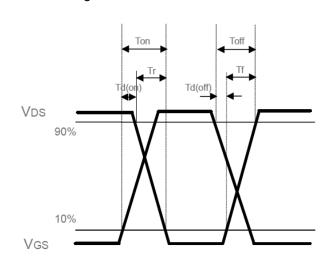


REV1.0 - FEB 2019 RELEASED - - 5 -

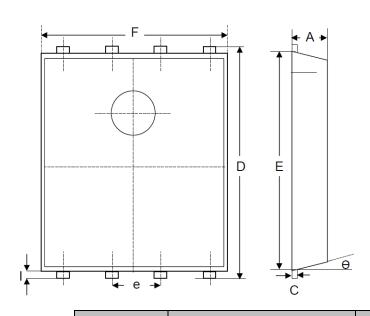

7. On-Resistance vs Junction Temperature

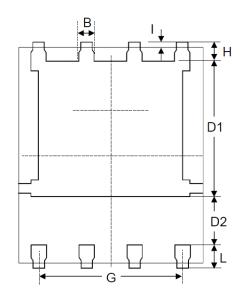

9. Maximum Safe Operation Area


11. Gate Charge Waveform


8. Drain Current vs. TJ

10. Thermal Transient Impedance


12. Switching Time Waveform



REV1.0 - FEB 2019 RELEASED - - 6 -

PACKAGE INFORMATION

Dimension in DFN8(5x6) (Unit: mm)

Symbol	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
В	0.330	0.510	0.013	0.020	
С	0.200	0.300	0.008	0.012	
D	5.900	6.100	0.232	0.240	
D1	3.380	3.780	0.133	0.149	
D2	1.100	-	0.043	-	
Е	5.700	5.800	0.224	0.228	
е	1.270	BSC	0.050	050 BSC	
F	4.800	5.000	0.189	0.197	
G	0.361	0.396	0.014	0.016	
Н	0.410	0.610	0.016	0.024	
I	0.060	0.200	0.002	0.008	
L	0.510	0.710	0.020	0.028	
θ	0°	12°	0°	12°	

REV1.0 - FEB 2019 RELEASED - - 7 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - FEB 2019 RELEASED - - 8 -