

DESCRIPTION

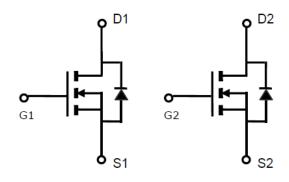
The AM4920 is the Dual N-Channel logic enhancement mode power field effect transistor is produced using high cell density. Advanced trench technology to provide excellent R_{DS(ON)}.

This device is suitable for use as a load switch or in PWM and gate charge for most of the synchronous buck converter applications.

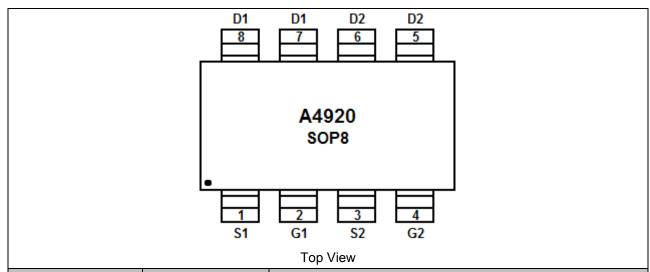
The AM4920 is available in SOP8 package.

ORDERING INFORMATION

Package Type	Part Number		
SOP8	M8	AM4920M8R	
SPQ: 2,500pcs/Reel	IVIO	AM4920M8VR	
Note	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- 30V / 7.8A, $R_{DS(ON)} = 16m\Omega (typ.)@V_{GS} = 10V$
- 30V / 5.8A, $R_{DS(ON)} = 24m\Omega$ (typ.)@V_{GS}=4.5V
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and Maximum DC current capability
- Available in SOP8 package


APPLICATIONS

- High Frequency Point-of-Load Synchronous
- New working DC-DC Power System
- Load Switch

N- CHANNEL MOSFET

PIN DESCRIPTION

Pin# **Symbol Function** 1 S1 Source 1 2 G1 Gate 1 3 S2 Source 2 4 G2 Gate 2 5 D2 Drain 2 6 D2 Drain 2 7 D1 Drain 1 8 D1 Drain 1

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise specified

1A - 25 C, utiless officiwise specified		
V _{DSS} , Drain-Source Voltage		30V
V _{GSS} , Gate-Source Voltage		±20V
I _D , Continuous Drain Current, V _{GS} =10V ^{NOTE1}	T _A =25°C	7.8A
	T _A =70°C	6.5A
I _{DM} , Pulsed Drain Current ^{NOTE2}		25A
E _{AS} , Single Pulse Avalanche Energy L=0.1mHNOTE3		27mJ
I _{AS} , Avalanche Current		14A
P _{D,} Power Dissipation	T _A =25°C	2.0W
	T _A =70°C	1.4W
T _J , Operation Junction Temperature		-55°C~150°C
T _{STG} , Storage Temperature Range		-55°C~150°C
		

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL INFORMATION

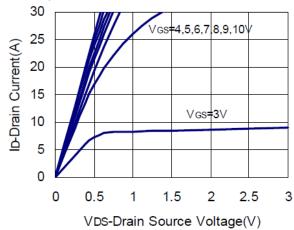
Parameter		Symbol	Max	Unit
Thermal Resistance-Junction to Ambient ^{NOTE1}	Steady-State	R _{θJA}	85	°C/W
Thermal Resistance Junction to Lead ^{NOTE1}	Steady-State	Rejc	50	°C/W

ELECTRICAL CHARACTERISTICS

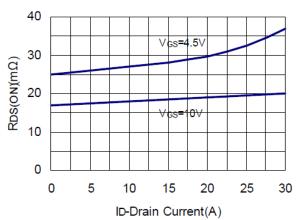
T_A = 25°C, unless otherwise specified

Parameter	Symbol	Conditions	Min	Туре	Max	Units
Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =250μA	30	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250μA	1.0	-	2.5	V
Gate Leakage Current	Igss	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V T _J =25°C	-	-	1	μА
		V _{DS} =24V, V _{GS} =0V T _J =55°C	-	-	5	
Drain-source On-ResistanceNOTE2	Б	V _{GS} =10V, I _D =7.8A	-	16	20	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =5.8A	-	24	30	
Forward Transconductance	g FS	V _{DS} =10V, I _D =6A	-	5.6	-	S
Source-Drain Doide						
Diode Forward VoltageNOTE2	V _{SD}	I _S =1.7A, V _{GS} =0V	-	0.75	1.0	V
Continuous Source Current ^{NOTE1,4}	ls		-	-	5.8	Α
Dynamic Parameters						
Total Gate Charge	Q _g (4.5V)	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	5	7.2	
Gate-Source Charge	Qgs	V _{DS} =15V, V _{GS} =4.5V,	-	1.6	-	nC
Gate-Drain Charge	Q_{gd}	- I _D =5.8A	-	1.9	-	
Input Capacitance	C _{iss}	\/ 45\/ \/ O\/	-	420	586	
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V,	-	65	-	pF
Reverse Transfer Capacitance	Crss	f=1MHz	-	52	-	
	t _{d(on)}		-	2.2	4.4	
Turn-On Time	t r	V _{DD} =15V, V _{GEN} =10V,	-	38.7	68.8	
T O((T'	$t_{d(off)}$	R _G =3.3Ω	-	12.5	25	nS
Turn-Off Time	t _f]	-	4.8	9.6	

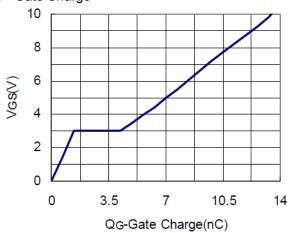
NOTE1: The value of R_{BJA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with

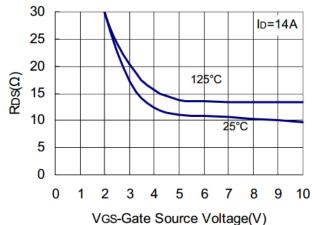

NOTE2: The data tested by pulsed , pulse width \leq 300uS , duty cycle \leq 2%

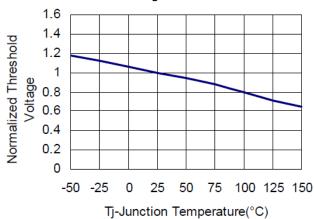
NOTE3: The EAS data shows Max. rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH.

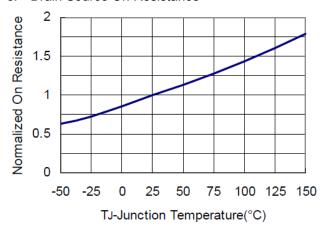

NOTE4: The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

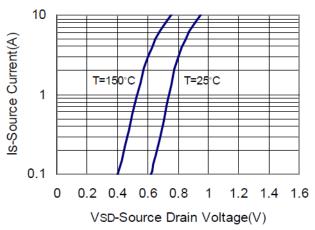
TYPICAL CHARACTERISTICS

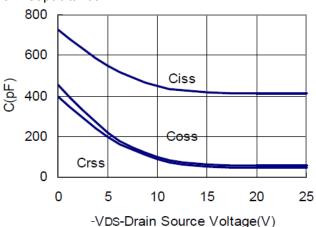

1. Output Characteristics

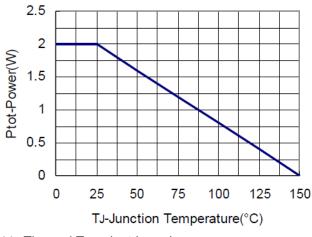

3. Drain Source On Resistance

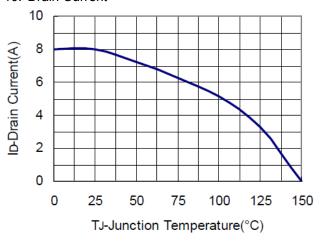

5. Gate Charge

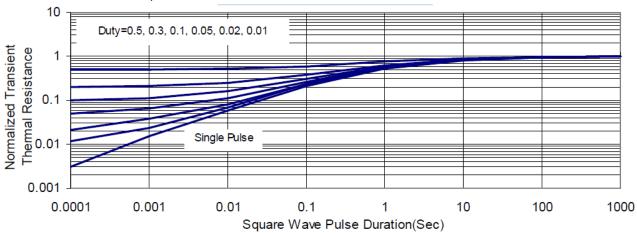

2. On Resistance vs. Gate Source Voltage


4. Gate Threshold Voltage

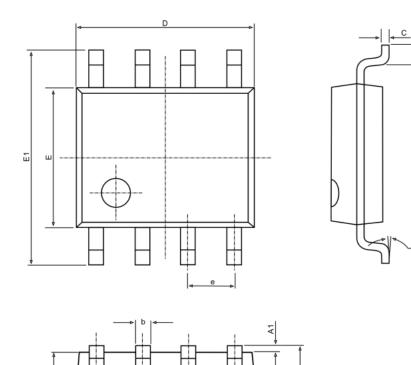

6. Drain Source On Resistance




8. Capacitance


9. Power Dissipation

10. Drain Current



11. Thermal Transient Impedance

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Or male al	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.040	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.288	0.244	
е	1.270 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.