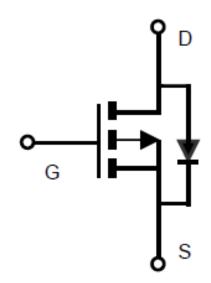
DESCRIPTION

AM4453 is the P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior, fast switching performance. These devices are well suited for high efficiency fast switching applications.

The AM4453 is available in SOP8 package.

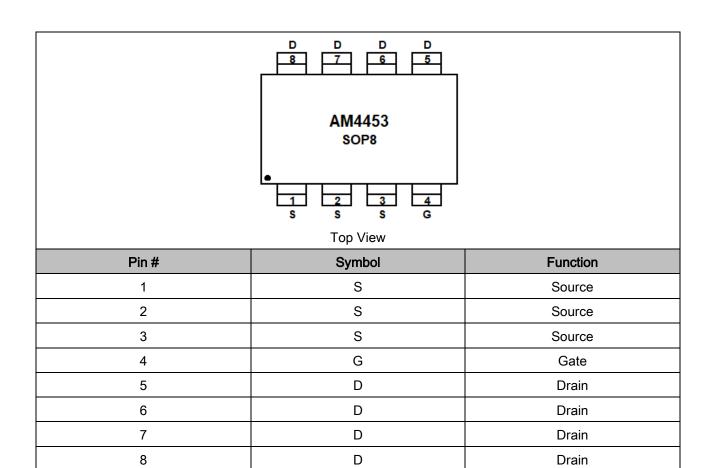
ORDERING INFORMATION

Package Type	Part Number			
SOP8	M8	AM4453M8R		
SPQ: 2,500pcs/Reel	IVIO	AM4453M8VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- $V_{DS} = -20V$, $I_{D} = -10.7A$ $R_{DS(ON)} = 12m\Omega(Typ.)@V_{GS} = -10V$ $R_{DS(ON)} = 14m\Omega(Typ.)@V_{GS} = -4.5V$ $R_{DS(ON)} = 18m\Omega(Typ.)@V_{GS} = -2.5V$ $R_{DS(ON)} = 23m\Omega(Typ.)@V_{GS} = -1.8V$
- Fast switch
- Low gate charge
- High power and current handling capability
- Available in SOP8 Package

APPLICATIONS


- LED Application
- Portable Equipment
- DC-DC Power Management

TYPICAL APPLICATION

REV1.0 - SEP 2018 RELEASED -

PIN DESCRIPTION

REV1.0 - SEP 2018 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted

V _{DSS} , Drain-Source Voltage		
V _{GSS} , Gate-Source Voltage		
T _A = 25°C	-10.7A	
T _A = 70°C	-8.6A	
I _{DM} , Pulsed Drain Current ^{NOTE1}		
I _{AS} , Avalanche Current ^{NOTE1}		
E _{AS} , Single Pulse Avalanche energy L=0.1mH ^{NOTE1,6}		
T _A = 25°C	3.1W	
T _A = 70°C	2W	
T _J , Maximum Junction Temperature		
T _{STG} , Storage Temperature Range		
	T _A = 70°C T _A = 25°C	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Parameter		Symbol	Min	Тур	Max	Units
Thermal Resistance Junction to Ambient ^{NOTE2}	t≦10s	J	-	-	40	
Thermal Resistance Junction to Ambient ^{NOTE2,4}	Ctandy Ctata	$R_{\theta JA}$	-	-	80	°C/W
Thermal Resistance Junction to Case	Steady-State	Rejc	ı	ı	30	

REV1.0 - SEP 2018 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, unless otherwise noted

T _A = 25°C, unless otherwise noted							
Parameter	Symbol	Conditions	Min	Тур	Max	Units	
Static Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _{DS} =-250μA	-20	-	-	V	
Gate Threshold Voltage	$V_{\text{GS(th)}}$	V_{DS} = V_{GS} , I_{DS} =-250 μ A	-0.4	-0.6	-1	V	
Gate Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±12V	-	-	±100	nA	
Zero Gate Voltage Drain Current	I	V _{DS} =-20V, V _{GS} =0V, T _J =25°C	-	-	-1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-16V, V _{GS} =0V, T _J =75°C	-	-	-10		
		V _{GS} =-10V I _{DS} =-10.7A	-	12	15	mΩ	
Drain-source	В	V _{GS} =-4.5V, I _{DS} =-8A	-	14	17		
On-Resistance ^{NOTE5}	R _{DS(ON)}	V _{GS} =-2.5V, I _{DS} =-5A	-	18	22		
		V _{GS} =-1.8V, I _{DS} =-3A	-	23	28		
Forward Transconductance	G_fs	V _{DS} =-10V, I _D =-10A	-	33	-	S	
Diode Characteristics							
Diode Forward Voltage NOTE5	V _{SD}	I _S =-1A, V _{GS} =0V	-	-0.7	-1	V	
Continuous Source Current	Is		-	-	-5.2	Α	
Reverse Recovery Time	t _{rr}		-	16.8	-	ns	
Reverse Recovery Charge	Qrr	I _S =10A, dl/dt=100A/µs	-	8	-	nC	
Dynamic and Switching Parameter	rs						
Total Gate Charge(10V)	Qg		-	39	54		
Total Gate Charge(4.5V)	Qg	V _{DS} =-10V, V _{GS} =-4.5V,	-	19	26.6		
Gate-Source Charge	Q _{gs}	I _{DS} =-5A	-	2.1	2.9	nC	
Gate-Drain Charge	Q _{gd}		-	3.8	5.3		
Input Capacitance	C _{iss}		-	1680	-		
Output Capacitance	Coss	V _{DS} =-10V, V _{GS} =0V,	-	228	-	pF	
Reverse Transfer Capacitance	Crss	f=1MHz	-	115	-		
Turn-On Time	t _{d(on)}		-	10	19		
	tr	V _{DD} =-10V, V _{GEN} =-4.5V,	-	38	72		
T O# Time	t _{d(off)}	_{ff)} R _G =10Ω, I _D =-1A		86	163	ns	
Turn-Off Time	t _f		-	25	48		

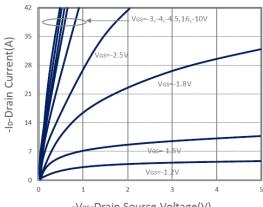
NOTE1: Pulsed width limited by maximum junction temperature $T_{J(MAX)}$ =150°C, initial temperature T_{J} =25°C.

NOTE2: Measure the value in a still air environment at T_A =25 °C using an installation mounted on a 1 in2 FR-4 board.

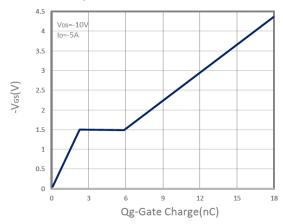
NOTE3: Current Rating based t≤10 sec thermal resistance rating

NOTE4: The $R_{\theta JA}$ is the sum of the thermal resistance.

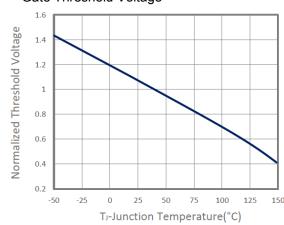
NOTE5: The pulse test width is ≤300µs and the duty cycle ≤ 2%.


NOTE6: The E_{AS} data shows Maximum, tested and pulse width limited by maximum.

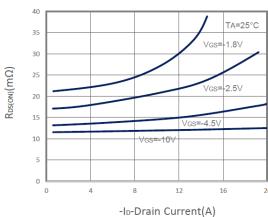
REV1.0 - SEP 2018 RELEASED - - 4 -

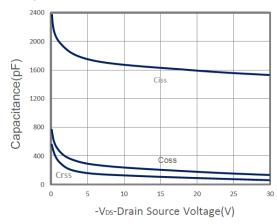

TYPICAL ELECTRICAL CHARACTERISTICS

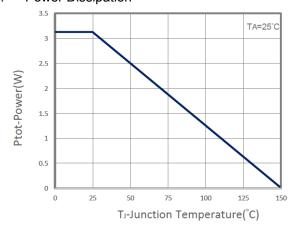
Output Characteristics 1.



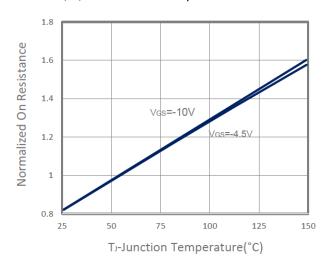
-V_{DS}-Drain Source Voltage(V)

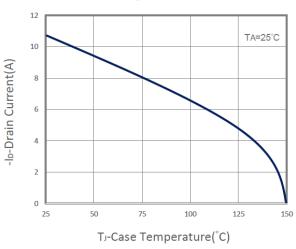

3. Gate Charge

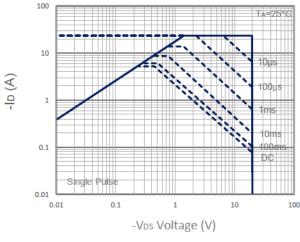

5. Gate Threshold Voltage

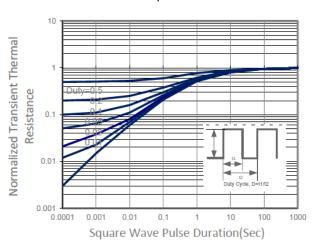

2. Drain-Source On Resistance

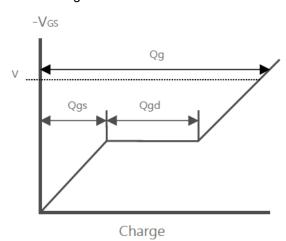
4. Capacitance

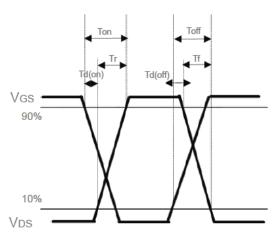

6. Power Dissipation


REV1.0 - SEP 2018 RELEASED -- 5 -

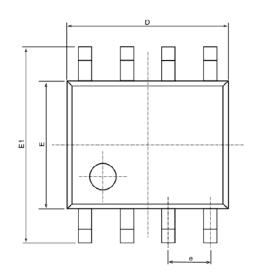

7. R_{DS(ON)} vs. Junction Temperature

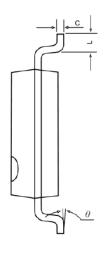

8. Drain Current vs. TJ

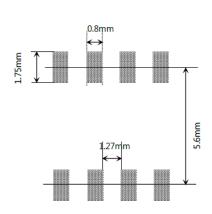

9. Maximum Safe Operation Area

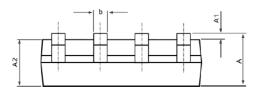

10. Thermal Transient Impedance

11. Gate Chrge Waveform


12. Switching Time Waveform




REV1.0 - SEP 2018 RELEASED - - 6 -


PACKAGE INFORMATION

Dimension in SOP8 Package (Unit: mm)

Recommended Land Pattern

Cymah al	Millim	neters	Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	1.350	1.750	0.053	0.069		
A1	A1 0.100		0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.270BSC		0.050)BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

REV1.0 - SEP 2018 RELEASED - - 7

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - SEP 2018 RELEASED - - 8 -