DESCRIPTION

The AM4407 is the P-Channel logic enhancement mode power field effect transistor is produced using high cell density. Advanced trench technology to provide excellent R_{DS(ON)}.

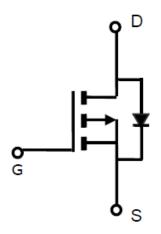
This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application, and low in-line power loss are needed in a very small outline surface mount package.

The AM4407 is available in SOP8 Package

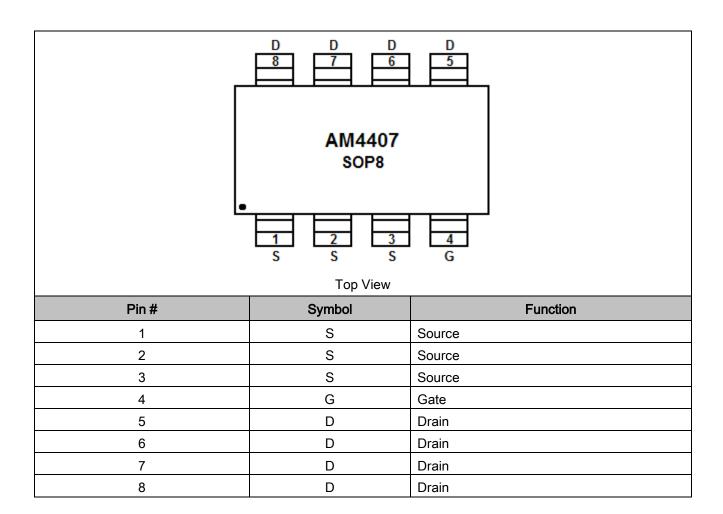
ORDERING INFORMATION

Package Type	Part Number		
0000	MO	AM4407M8R	
SOP8	M8	AM4407M8VR	
Note	R: Tape & Reel		
Note	V: Green	Package	
AiT provides all Pb free products			
Suffix "V" means Green Package			


FEATURES

- 30V/-12.0A, $R_{DS(ON)} = 12m\Omega(typ)@V_{GS} = -10V$
- -30V/-7.5A, $R_{DS(ON)} = 19m\Omega(typ)@V_{GS} = -4.5V$
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current capability
- Available in SOP8 Package

APPLICATION


- High Frequency Point-of-Load Synchronous
- New working DC-DC Power System
- Load Switch

P CHANNEL MOSFET

REV1.0 - SEP 2010 RELEASED - -1

PIN DESCRIPTION

THERMAL INFORMATION

Parameter	Symbol	Max	Unit
Thermal Resistance-Junction to Ambient	R ₀ JA	85	°C/W
Thermal Resistance-Junction to Case	Rejc	28	°C/W

REV1.0 - SEP 2010 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C Unless otherwise specified

V _{DSS} , Drain-Source Voltage		30V
V _{GSS} , Gate-Source Voltage		±20V
I _D , Continuous Drain Current, V _{GS} =10V ^{NOTE1}	T _A =25°C	12A
I _{DM} , Pulsed Drain Current ^{NOTE2}		30A
P _D , Power Dissipation	T _A =25°C	3.2W
	T _A =70°C	2W
T _J , Operation Junction Temperature		-55/150°C
T _{STG} , Storage Temperature Range		-55/150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The value of $R_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with $T_{A}=25^{\circ}C$.

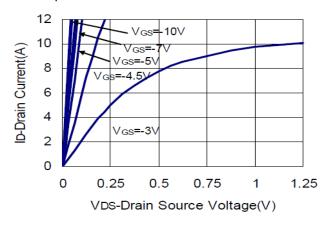
NOTE2: The data tested by pulsed , pulse width≦300us , duty cycle≦2%

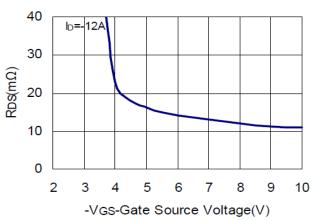
REV1.0 - SEP 2010 RELEASED - - 3

ELECTRICAL CHARACTERISTICS

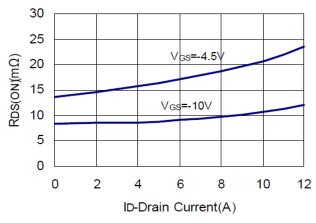
 T_J = 25°C Unless otherwise specified

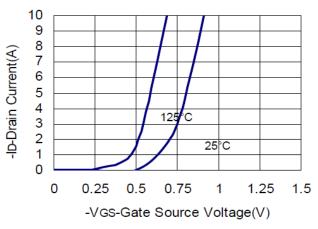
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Static Parameters			•			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250μA	-30	-	-	V
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =-250μA	-1.0	-	-2.5	V
Gate Leakage Current	Igss	V _{DS} =0V,V _{GS} =±20V	-	-	±100	nA
Zero Gate Voltage Drain		V _{DS} =-24V,V _{GS} =0V	-	-	-1	
Current	I _{DSS}	V _{DS} =-24V,V _{GS} =0V T _J =55°C	-	-	-5	μΑ
Drain-source On-Resistance	Б	V _{GS} =-10V,I _D =-12A	-	12	15	~~ (
	R _{DS(ON)}	Vgs=-4.5V, ID=-7.5A	-	19	25	mΩ
Forward Transconductance	G _{fs}	V _{DS} =-5V,I _D =-30.0A	-	24	-	S
Source-Drain Diode						
Diode Forward Voltage	V _{SD}	I _S =-2.3A,V _{GS} =0V	-	-0.75	-1.0	V
Dynamic Parameters						
Total Gate Charge	Qg	V _{DS} =-15V	-	21	-	
Gate-Source Charge	Q _{gs}	V _{GS} =4.5V	-	5.2	-	nC
Gate-Drain Charge	Q_{gd}	I _D =-12A	-	7.5	-	
Input Capacitance	Ciss	\\ - 45\\	-	2220	-	
Output Capacitance	Coss	V _{DS} =-15V	-	320	-	
Reverse Transfer Capacitance	Crss	V _{GS} =0V f=1MHz	-	235	-	pF
Turn-On Time	t _{d(on)}		-	34	-	
	tr	- V _{DD} =15V	-	35	-	
Turn-Off Time	t _{d(off)}	V _{GS} =-10V	-	70	-	nS
	t _f	I_D =-5A, R_G =3.3 Ω	-	12	-	

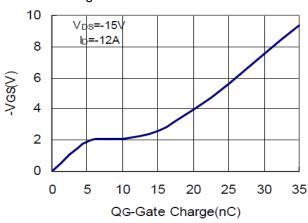

REV1.0 - SEP 2010 RELEASED - - 4 -

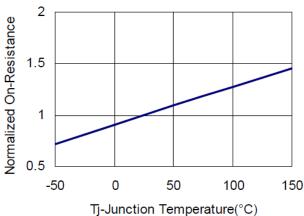

TYPICAL CHARACTERISTICS

T_A=25°C Unless specified

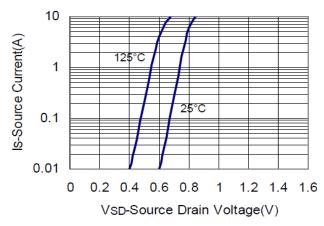

1. Output Characteristics

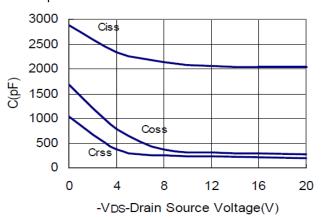

2. Drain-Source On Resistance


3. Drain Source On Resistance

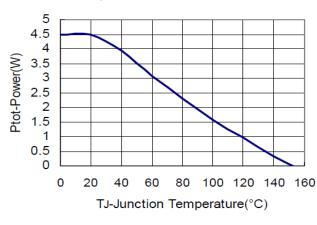

4. Transfer Characteristics

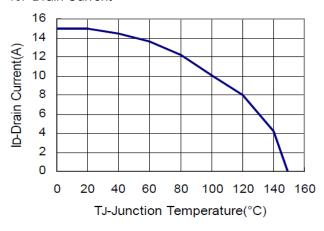
5. Gate Charge

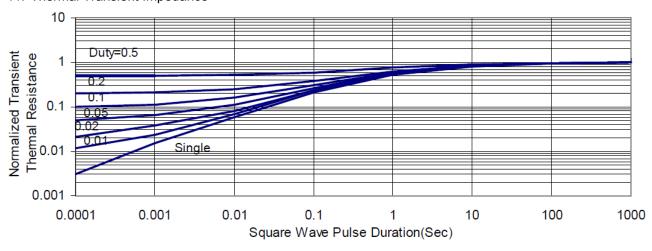

6. Drain Source Resistance


- 5 -

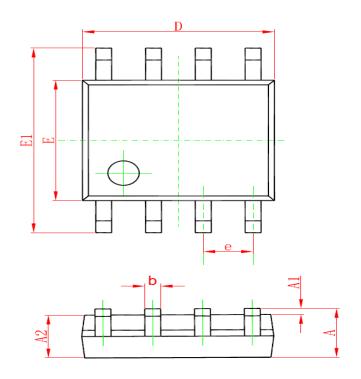
REV1.0 - SEP 2010 RELEASED -

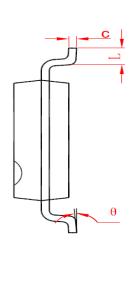



8. Capacitance


9. Power Dissipation

10. Drain Current


11. Thermal Transient Impedance



REV1.0 - SEP 2010 RELEASED - - 6 -

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max		
Α	1.350	1.750		
A1	0.100	0.250		
A2	1.350	1.550		
b	0.330	0.510		
С	0.170	0.250		
D	4.700	5.100		
E	3.800	4.000		
E1	5.800	6.200		
е	1.270(BSC)			
L	0.400	1.270		
θ	0°	8°		

REV1.0 - SEP 2010 RELEASED - - 7 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - SEP 2010 RELEASED - - 8 -