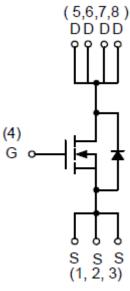


DESCRIPTION

The AM4406 is available in SOP8 Package

ORDERING INFORMATION

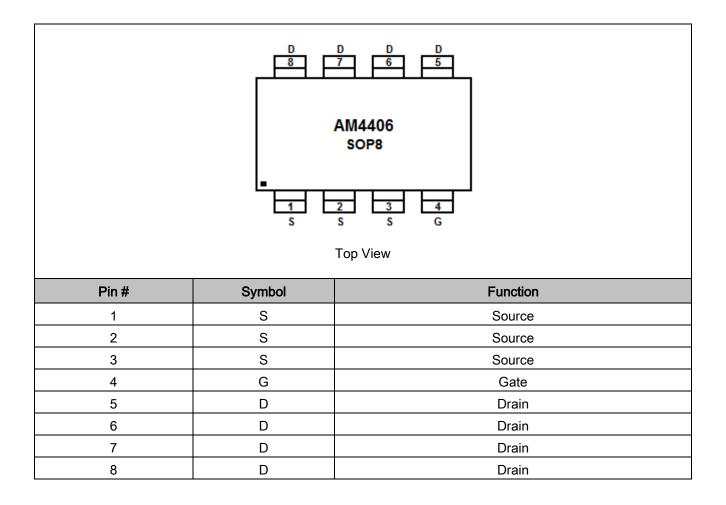
Package Type	Part Number			
COD9 M9		AM4406M8R		
SOP8	M8	AM4406M8VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				


FEATURES

- 30V/12A,
 R_{DS(ON)}= 11.5mΩ(max.) @ V_{GS}= 10V
 R_{DS(ON})= 15.5mΩ(max.) @ V_{GS}= 4.5V
- Reliable and Rugged
- Available in SOP8 Package

APPLICATION

 Power Management in Notebook Computer, Portable Equipment and Battery Powered Systems.


PIN DESCRIPTION

N-Channel MOSFET

PIN DESCRIPTION

٦

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}C$ Unless Otherwise Noted
V _{DSS} , Drain-Source Voltage

V _{DSS} , Drain-Source Voltage		30V	
V _{GSS} , Gate-Source Voltage		±20V	
	T _A =25°C	12A	
I _D NOTE1, Continuous Drain Current (V _{GS} =10V)	T _A =70°C	10A	
$I_{DM^{NOTE1}}$, 300µs Pulsed Drain Current (V _{GS} =10V)	40A		
Is NOTE1, Diode Continuous Forward Current	1A		
I _{AS} NOTE2, Avalanche Current (Single Pulse)	23A		
E _{AS NOTE2} , Avalanche Energy, Single Pulse (L=0.1mH)	25mJ		
T _J , Maximum Junction Temperature	150°C		
T _{STG} , Storage Temperature Range	-55°C~150°C		
	T _A =25°C	3.1W	
$P_D NOTE1$, Maximum Power Dissipation	T _A =70°C	2.0W	
	t ≤10s	32°C/W	
R _{0JA} NOTE1,3, Thermal Resistance-Junction to Ambient	Steady State	65°C/W	
R_{BJL} , Thermal Resistance-Junction to Lead	Steady State	20°C/W	

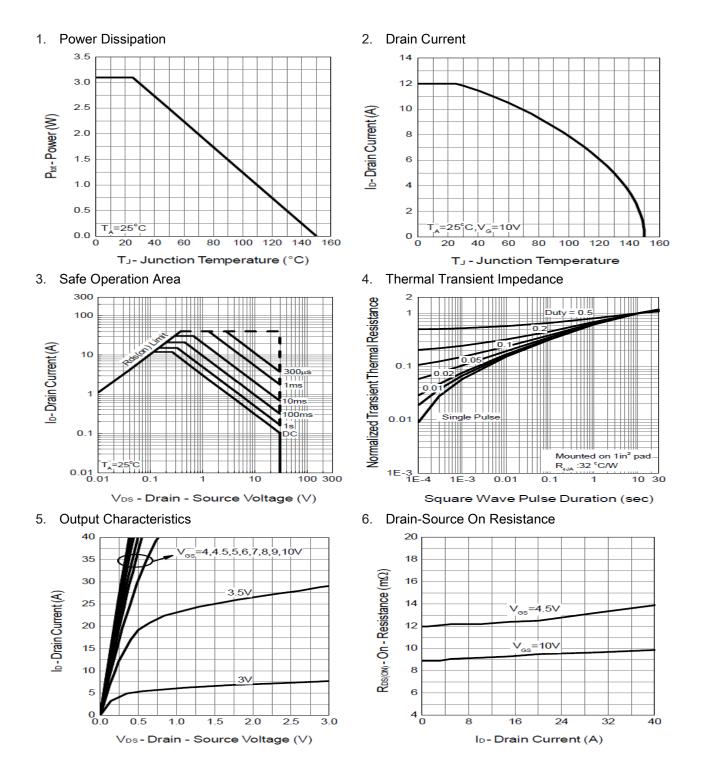
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Surface Mounted on 1in² pad area, t≤10sec. Maximum Power dissipation is calculated from R_{BJA} (worst)=40°C/W under t ≤10s. NOTE2: UIS tested and pulse width limited by maximum junction temperature 150°C (initial temperature T_J=25°C). NOTE3: Maximum under Steady State conditions is 75°C/W.

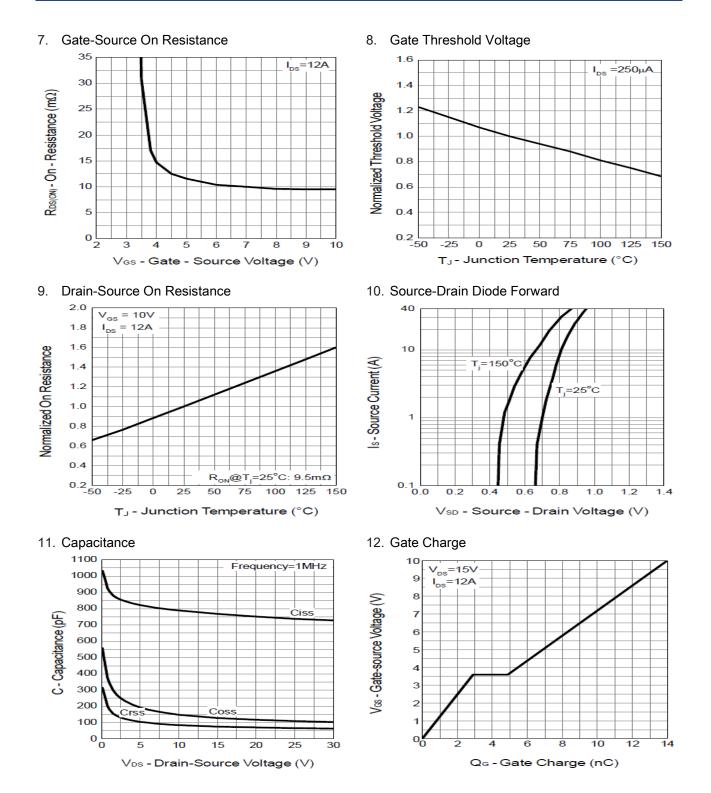
REV2.0 - APR 2013 RELEASED, FEB 2015 UPDATED -

ELECTRICAL CHARACTERISTICS

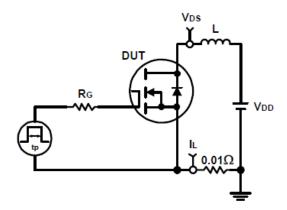
T_A = 25°C Unless Otherwise Noted

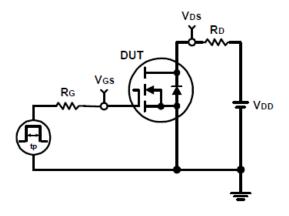

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _{DS} =250µA	30	-	-	V
Zero Gate Voltage Drain	IDSS	V _{DS} =24V, V _{GS} =0V	-	-	1.0	
Current	IDSS	T _J =85°C	-	-	30	μA
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _{DS} =250µA	1.3	1.9	2.5	V
Gate Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V	-	-	±100	nA
Drain-Source On-state	RDS(ON)	V _{GS} =10V,I _{DS} =12A	I	9.5	11.5	
Resistance	NOTE4	V _{GS} =4.5V,I _{DS} =10A	-	12.5	15.5	mΩ
Forward Transconductance	G _{fs}	V _{DS} =5V, I _{DS} =20A	-	50	-	S
Diode Characteristics						
Diode Forward Voltage	V_{SD}^{NOTE4}	I _{SD} =1A,V _{GS} =0V	-	0.7	1.1	V
Reverse Recovery Time	t _{rr} NOTE5		-	19	-	ns
Reverse Recovery Charge	Q _{rr} NOTE5	I _{SD} =12A, dI _{SD} /dt=100A/µs	-	10	-	nC
Dynamic Characteristics ^{NOTE5}						
Gate Resistance	R _G	V _{GS} =0V,V _{DS} =0V,F=1MHz	-	2.5	-	Ω
Input Capacitance	Ciss		-	770	-	pF
Output Capacitance	Coss	$V_{GS}=0V, V_{DS}=15V,$	-	130	-	
Reverse Transfer Capacitance	Crss	Frequency=1.0MHz	-	76	-	
Turn-on Delay Time	t _{d(ON)}		-	8	14	
Turn-on Rise Time	tr	V_{DD} =15V, RL=15 Ω ,	-	10	17	ns
Turn-off Delay Time	t _{d(OFF)}	I _{DS} =1A, V _{GEN} =10V,	-	23	42	
Turn-off Fall Time	t _f	R _G =6Ω	-	4.5	12	
Gate Charge Characteristics ^{NOTE5}						
Total Gate Charge		V _{DS} =15V, V _{GS} =10V, I _{DS} =12A	-	14	18	
Total Gate Charge	Qg		-	6.3	-	
Gate-Source Charge	Qgs	V _{DS} =15V, V _{GS} =4.5V, I _{DS} =12A	-	2.9	-	nC
Gate-Drain Charge	Q _{gd}		-	2	-	

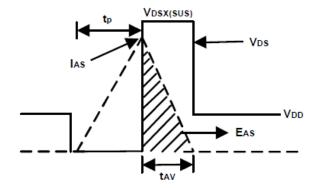
NOTE4: Pulse test: pulse width ≤300us, duty cycle≤ 2%

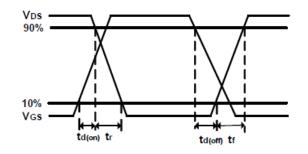

NOTE5: Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS

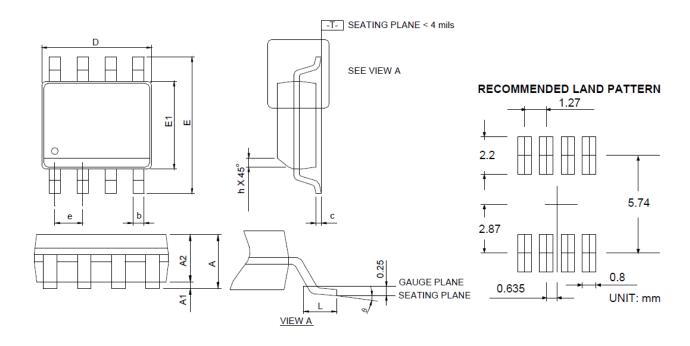





DETAILED INFORMATION


Avalanche Test Circuit and Waveforms

Switching Time Test Circuit and Waveforms



PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max	
А	-	1.750	
A1	0.100	0.250	
A2	1.250	-	
b	0.310	0.510	
С	0.170	0.250	
D	4.800	5.000	
Е	5.800	6.200	
E1	3.800	4.000	
е	1.270(BSC)		
h	0.250	0.500	
L	0.400	1.270	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servers property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.