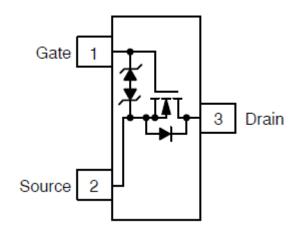


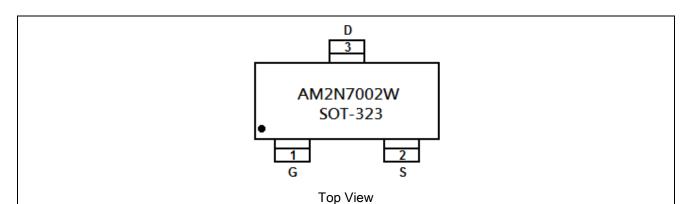
DESCRIPTION

Available in SOT-323 package.

FEATURES


● ESD Protected: 1000V

• Available in SOT-323 package


ORDERING INFORMATION

Package Type	Part Number		
SOT-323	C3	AM2N7002WC3R	
(SC70-3)	C3	AM2N7002WC3VR	
	V: Halogen free Package		
Note	R: Tape & Reel		
	SPQ: 3,000pcs/Reel		
AiT provides all RoHS products			
Suffix "V" means Halogen free Package			

N CHANNEL MOSFET

PIN DESCRIPTION

 Pin #
 Symbol
 Function

 1
 G
 Gate

 2
 S
 Source

 3
 D
 Drain

ABSOLUTE MAXIMUM RATINGS

V _{DSS} , Drain-Source Voltage	60Vdc
V_{DGR} , Drain-Gate Voltage (R _{GS} = 1.0MΩ)	60Vdc
Drain Current	
I _D , Continuous T _C = 25°C NOTE1	±115mAdc
T _C = 100°C NOTE1	±75mAdc
I _{DM} , Pulsed NOTE2	±800mAdc
Gate-Source Voltage	
V _{GS} , Continuous	±20Vdc
V _{GSM} , Non−repetitive (tp ≤ 50μs)	±40Vpk

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The Power Dissipation of the package may result in a lower continuous drain current.

NOTE2: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.

THERMAL CHARACTERISTICS

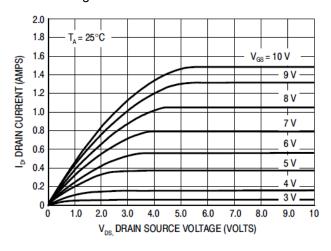
Parameter	Symbol	Max.	Unit	
Total Device Dissipation FR-5 Board	P _D	225	mW	
NOTE3 $T_A = 25^{\circ}C$		1.8	mW/°C	
Derate above 25°C				
Thermal Resistance, Junction to Ambient	Reja	556	°C/W	
Total Device Dissipation	P _D	300	mW	
Alumina Substrate, NOTE4 TA = 25°C		2.4	mW/°C	
Derate above 25°C				
Thermal Resistance, Junction to Ambient	ReJA	417	°C/W	
Junction and Storage Temperature	T _J , T _{STG}	-55 to +150	°C	

NOTE3: FR-5 = $1.0 \times 0.75 \times 0.062$ in.

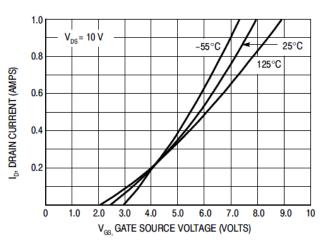
NOTE4: Alumina = $0.4 \times 0.3 \times 0.025$ in 99.5% alumina.

ELECTRICAL CHARACTERISTICS

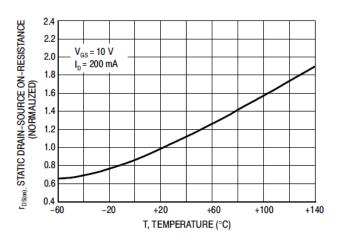
 $T_A = 25$ °C, unless otherwise specified

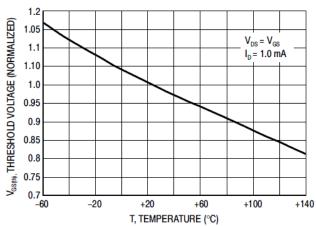

Parameter	Symbol	Condi	tions	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0$, $I_D = 10 \mu Adc$		60	-	-	Vdc
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0,	T _J = 25°C	ı	ı	1.0	μAdc
		V _{DS} = 60Vdc	T _J = 125°C	ı	-	500	
Gate-Body Leakage Current,	lassa	V _{GS} = 20Vdc				1	u A do
Forward	IGSSF			•	-	'	μAdc
Gate-Body Leakage Current,	I _{GSSR}	V _{GS} = -20Vdc		_	_	-1	μAdc
Reverse	IGSSK						-1 μAdc
ON CHARACTERISTICS NOTE2	T	1					
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 2$	250µAdc	1.0	1.6	2.5	Vdc
On-State Drain Current	I _{D(ON)}	V _{DS} ≥ 2.0V _{DS(ON}	I), V _{GS} =10Vdc	500	-	_	mA
Static Drain–Source	VDC(ON)	$V_{DS(ON)}$ $V_{GS} = 10Vdc, I_D = 500mAdc$ $V_{GS} = 5.0Vdc, I_D = 50mAdc$		-	-	3.75	Vdc
On-State Voltage	V DS(ON)			-	-	0.375	
		V _{GS} = 10V,	T _C = 25°C	-	1.4	7.5	
Static Drain–Source	Proven	I _D = 500mAdc	T _C = 125°C	-	-	13.5	Ω
On–State Resistance	R _{DS(ON)}	$V_{GS} = 5.0 Vdc$,	T _C = 25°C	-	1.8	7.5	12
		I _D = 50mAdc	T _C = 125°C	-	-	13.5	
Forward Transconductance	g FS	V _{DS} ≥2.0V _{DS(ON)} ,I _D =200mAdc		80	-	-	mS
DYNAMIC CHARACTERISTICS		T					
Input Capacitance	Ciss	V _{DS} = 25Vcd,		-	1.7	50	
Output Capacitance	Coss	V _{GS} = 0,		-	10	25	pF
Reverse Transfer Capacitance	C _{RSS}	f = 1.0MHz		-	2.5	5.0	
SWITCHING CHARACTERISTICS	NOTE7	T					
Turn-On Delay Time	t _{d(ON)}	V_{DD} = 25Vdc , I_D \cong 500mAdc, R_G = 25 Ω , R_L = 50 Ω , V_{GEN} = 10V		-	7	20	ne
Turn-Off Delay Time	t _{d(OFF)}			-	11	40	ns
BODY-DRAIN DIODE RATINGS	T					,	
Diode Forward On-Voltage	V _{SD}	I _S = 115mAdc, V _{GS} = 0V		-	-	-1.5	Vdc
Source Current Continuous	Is	Body Diode		-	-	-115	mAdc
Source Current Pulsed	Іѕм			-	-	-800	mAdc

NOTE2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

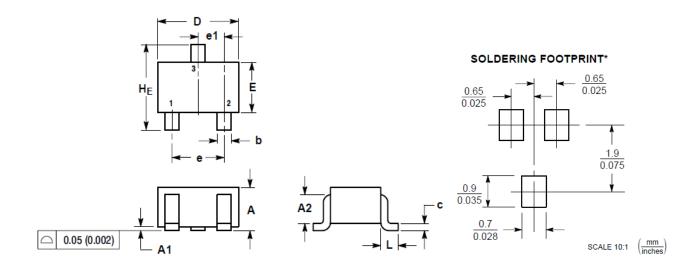


TYPICAL PERFORMANCE CHARACTERISTICS


1. Ohmic Region


2. Transfer Characteristics

3. Temperature vs. Static Drain-Source On-Resistance



4. Temperature vs. Gate Threshold Voltage

PACKAGE INFORMATION

Dimension in SOT-323(SC-70) Package (Unit: mm)

SYMBOL	MIN	MAX		
Α	0.800	1.000		
A1	0.000	0.100		
A2	0.700 REF			
b	0.300	0.400		
С	0.100	0.250		
D	1.800	2.200		
E	1.150	1.350		
е	1.200	1.400		
e1	0.650 BSC			
L	0.425 REF			
HE	2.000	2.400		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.