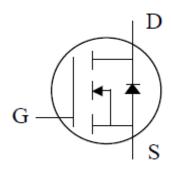
DESCRIPTION

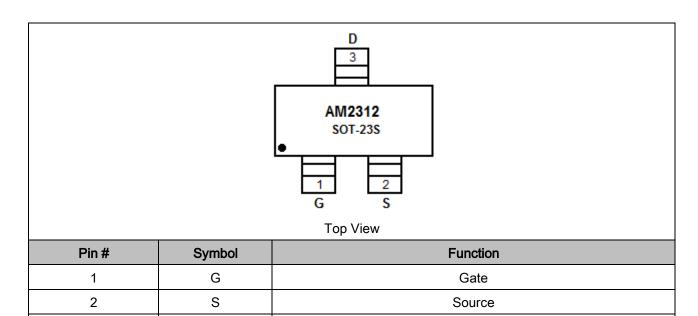
The AM2312 is available in SOT-23S package.


ORDERING INFORMATION

Package Type	Part Number			
SOT 228	E3S	AM2312E3SR		
SOT-23S		AM2312E3SVR		
	V: Halogen free Package			
Note	R: Tape & Reel			
	SPQ: 3,000pcs/Reel			
AiT provides all RoHS products				
Suffix "V" means Halogen free Package				

FEATURES

- V_{DS} = 20V $R_{DS(ON)}$, V_{GS} @4.5V, I_{DS} @5.0A = 41mΩ $R_{DS(ON)}$, V_{GS} @2.5V, I_{DS} @4.5A = 47mΩ
- Advanced trench process technology
- High Density Cell Design For Ultra Low On-Resistance
- Capable of 2.5V gate drive
- Lower on-resistance
- Available in SOT-23S Package


PIN DESCRIPTION

PIN DESCRIPTION

3

D

Drain

ABSOLUTE MAXIMUM RATINGS

V _{DS} , Drain-Source Voltage		20V	
V _{GS} , Gate-Source Voltage		±8V	
L Q III D II Q III NOTE II Q III NOTE II Q	T _A =25°C	4.9A	
I _D , Continuous Drain Current ^{NOTE3} , V _{GS} @ 4.5V	T _A =70°C	3.4A	
I _{DM} , Pulsed Drain Current ^{NOTE1,2}		15A	
P _D , Total Power Dissipation	T _A =25°C	0.75V	
Linear Derating Factor		1.3W/°C	
T _{STG} , Storage Temperature Range		-55°C ~ 150°C	
T _J , Operating Junction Temperature Range		-55°C ~ 150°C	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

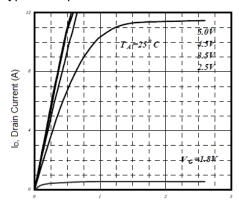
THERMAL DATA

Parameter	Symbol	Value	Units
Max. Thermal Resistance Junction-ambient NOTE3	R _{thj-a}	140	°C/W

NOTE1: Pulse width limited by Max. junction temperature.

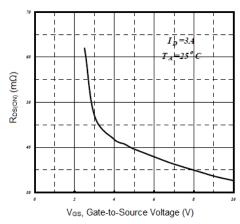
NOTE2: Pulse width ≤300us, duty cycle ≤2%.

NOTE3: Surface mounted on 1 in² copper PCB board

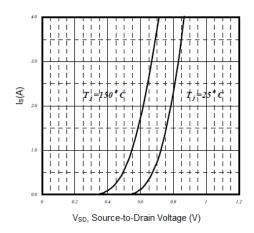

ELECTRICAL CHARACTERISTICS

T_J=25°C, unless otherwise specified

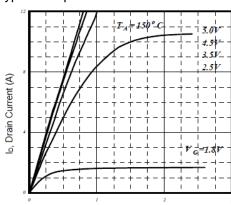
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D = 250uA	20			V
Drain-Source On-State	R _{DS(ON)}	V _{GS} = 1.8V, I _D = 4.0A		31	57	mΩ
		V_{GS} = 2.5V, I_{D} = 4.5A		24	47	
Resistance		V _{GS} = 4.5V, I _D = 5.0A		21	41	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D = 250uA	0.4	0.6	1	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20V, V _{GS} = 0V			1	uA
Gate Body Leakage	Igss	$V_{GS} = \pm 8V$, $V_{DS} = 0V$			±100	nA
Gate Resistance	R _g					
Forward Transconductance	gfs	V _{DS} = 10V, I _D = 5A		40		S
Dynamic						
Total Gate Charge	Qg	- V _{DS} = 10V, I _D = 5A - V _{GS} = 4.5V		11.2		nC
Gate-Source Charge	Q_{gs}			1.4		
Gate-Drain Charge	Q_{gd}			2.2		
Turn-On Delay Time	$t_{d(on)}$			15	25	
Turn-On Rise Time	t r	$V_{DD} = 10V, I_D = 1A,$		40	60	
Turn-Off Delay Time	$t_{\text{d(off)}}$	V_{GEN} = 4.5V, R_G = 6Ω		48	70	ns
Turn-Off Fall Time	t _f			31	45	
Input Capacitance	Ciss	\/ - 0\/ \/ - 0\/		500		pF
Output Capacitance	C_{oss}	$V_{DS} = 8V, V_{GS} = 0V$		300		
Reverse Transfer Capacitance	Crss	f = 1.0 MHz		140		
Source-Drain Diode						
Max. Diode Forward Current	ls				1.7	Α
Diode Forward Voltage	V _{SD}	I _S = 1.7A, V _{GS} = 0V			1.2	V


TYPICAL PERFORMANCE CHARACTERISTICS

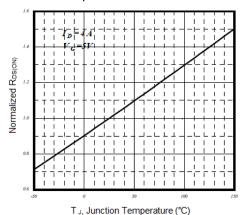
1. Typical Output Characteristics



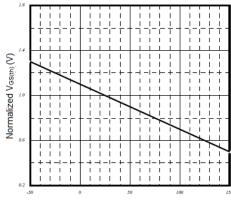
V_{DS}, Drain-to-Source Voltage (V)


3. On-Resistance vs. Gate Voltage

5. Forward Characteristic of Reverse Diode

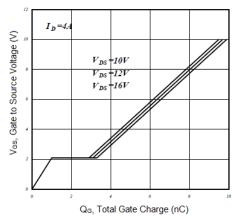

2. Typical Output Characteristics

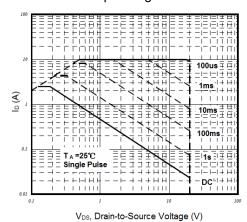
V_{DS}, Drain-to-Source Voltage (V)

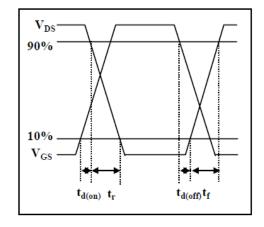

4. Normalized On-Resistance vs.

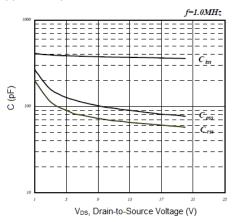
Junction Temperature

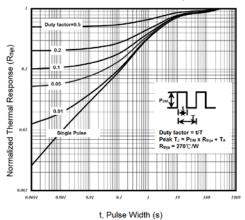
6. Gate Threshold Voltage vs.

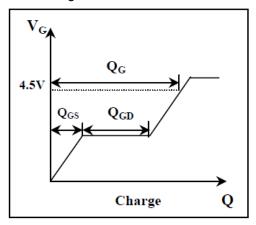

Junction Temperature


T_J, Junction Temperature (°C)

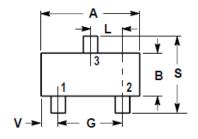

7. Gate Charge Characteristics

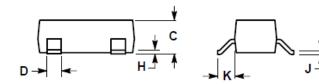

9. Maximum Safe Operating Area

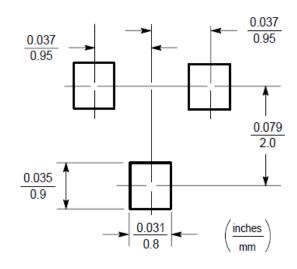

11. Switching Time Circuit


8. Typical Capacitance Characteristics

10. Effective Transient Thermal Impedance




12. Gate Charge Circuit



PACKAGE INFORMATION

Dimension in SOT-23S Package (Unit: mm)

DIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
А	2.80	3.04	0.1102	0.1197	
В	1.20	1.40	0.0472	0.0551	
С	0.89	1.11	0.0350	0.0440	
D	0.37	0.50	0.0150	0.0200	
G	1.78	2.04	0.0701	0.0807	
Н	0.013	0.10	0.0005	0.0040	
J	0.085	0.177	0.0034	0.0070	
K	0.35	0.69	0.0140	0.0285	
L	0.89	1.02	0.0350	0.0401	
S	2.10	2.64	0.0830	0.1039	
V	0.45	0.60	0.0177	0.0236	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.