

### DESCRIPTION

V<sub>DS</sub>= 20V

V<sub>GS</sub>= ±6V

ID(A)= 350mA

 $R_{DS(ON)} = 0.8\Omega @V_{GS} = -4.5V$ 

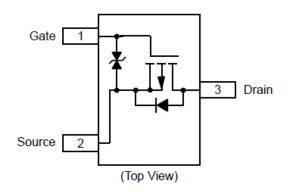
 $R_{DS(ON)} = 1.2\Omega @V_{GS} = -2.5V$ 

 $R_{DS(ON)} = 1.8\Omega @V_{GS} = -1.8V$ 

The AM1013 is available in SC-89 package

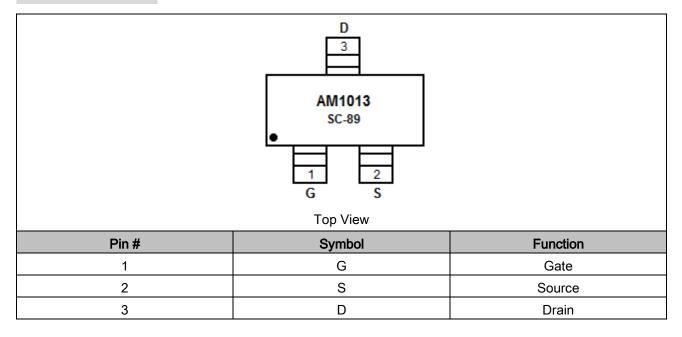
### ORDERING INFORMATION

| Package Type                   | Part Number             |             |  |  |
|--------------------------------|-------------------------|-------------|--|--|
| SC-89                          | СКЗ                     | AM1013CK3R  |  |  |
| SPQ: 3,000pcs/Reel             | CKS                     | AM1013CK3VR |  |  |
| Note                           | V: Halogen free Package |             |  |  |
| Note                           | R: Tape & Reel          |             |  |  |
| AiT provides all RoHS products |                         |             |  |  |


# FEATURES

- Gate-Source ESD Protected: 2kV
- High-Side Switching
- Low On-Resistance: 1.2Ω
- Low Threshold: 0.8V (typ)
- Fast Switching Speed: 14ns
- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation
- Available in SC-89 package

# APPLICATION


- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Cell Phones, Pagers

### P CHANNEL MOSFET





# PIN DESCRIPTION



# ABSOLUTE MAXIMUM RATINGS

#### $T_A$ = 25°C, unless Otherwise Noted

| Parameter                                              |                      | Symbol          | 5 secs    | Steady State | Unit |
|--------------------------------------------------------|----------------------|-----------------|-----------|--------------|------|
| Drain-Source Voltage                                   |                      | V <sub>DS</sub> | -20       |              | V    |
| Gate-Source Voltage                                    |                      | V <sub>GS</sub> | ±6        |              | V    |
| Continuous Drain Current (TJ = 150°C) <sup>NOTE2</sup> | T <sub>A</sub> =25°C | ١ <sub>D</sub>  | -400      | -350         |      |
|                                                        | T <sub>A</sub> =85°C |                 | -300      | -275         |      |
| Pulsed Drain Current <sup>NOTE1</sup>                  |                      | Idm             | -1000     |              | mA   |
| Continuous Source Current (diode conduction)NOTE2      |                      | ls              | -275      | -250         |      |
| Maximum Power DissipationNOTE2 for SC-75               | T <sub>A</sub> =25°C | P <sub>D</sub>  | 175       | 150          | mW   |
|                                                        | T <sub>A</sub> =85°C |                 | 90        | 80           |      |
| Maximum Power DissipationNOTE2 for SC-89               | T <sub>A</sub> =25°C | PD              | 275       | 250          |      |
|                                                        | T <sub>A</sub> =85°C |                 | 160       | 140          |      |
| Operating Junction and Storage Temperature Range       |                      | Tj, Tstg        | -55 to150 |              | °C   |
| Gate-Source ESD Rating (HBM, Method 3015)              |                      | ESD             | 2000      |              | V    |

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Pulse width limited by maximum junction temperature.

NOTE2: Surface Mounted on FR4 Board.

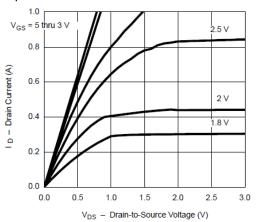


# ELECTRICAL CHARACTERISTICS

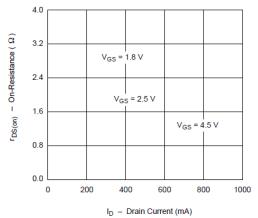
#### $T_A = 25^{\circ}C$ , Unless Otherwise Noted

| Parameter                                            | Symbol                 | Conditions                                                       | Min   | Тур  | Max  | Unit |  |
|------------------------------------------------------|------------------------|------------------------------------------------------------------|-------|------|------|------|--|
| Static                                               |                        |                                                                  |       |      |      |      |  |
| Gate Threshold Voltage                               | V <sub>GS(th)</sub>    | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =-250µA         | -0.45 | -    | -    | V    |  |
| Gate-Body Leakage                                    | lgss                   | V <sub>DS</sub> =0V, V <sub>GS</sub> =±4.5V                      | -     | ±1   | ±2   | μA   |  |
| Zero Gate Voltage Drain Current                      |                        | V <sub>DS</sub> =-16V, V <sub>GS</sub> =0V                       | -     | -0.3 | -100 | nA   |  |
|                                                      | IDSS                   | V <sub>DS</sub> =-16V, V <sub>GS</sub> =0V, T <sub>J</sub> =85°C | -     | -    | -5   | μA   |  |
| On-State Drain Current <sup>NOTE3</sup>              | I <sub>D(on)</sub>     | V <sub>DS</sub> =-5 V, V <sub>GS</sub> =-4.5V                    | -700  | -    | -    | mA   |  |
| Drain-Source On-State<br>Resistance <sup>NOTE3</sup> |                        | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-350mA                   | -     | 0.8  | 1.2  | Ω    |  |
|                                                      | R <sub>DS(on)</sub>    | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-300mA                   | -     | 1.2  | 1.6  |      |  |
|                                                      |                        | V <sub>GS</sub> =-1.8V, I <sub>D</sub> =-10mA                    | -     | 1.8  | 2.7  |      |  |
| Forward TransconductanceNOTE3                        | <b>g</b> <sub>fs</sub> | V <sub>DS</sub> =-10V, I <sub>D</sub> =-250mA                    | -     | 0.4  | -    | S    |  |
| Diode Forward Voltage <sup>NOTE3</sup>               | V <sub>SD</sub>        | Is=-150mA,V <sub>GS</sub> =0V                                    | -     | -0.8 | -1.2 | V    |  |
| Dynamic <sup>NOTE4</sup>                             |                        |                                                                  |       |      |      |      |  |
| Total Gate Charge                                    | Qg                     |                                                                  | -     | 1500 | -    |      |  |
| Gate-Source Charge                                   | Qgs                    | $V_{DS}$ =-10V, $V_{GS}$ =-4.5V,                                 | -     | 150  | -    | рС   |  |
| Gate-Drain Charge                                    | Q <sub>gd</sub>        | I <sub>D</sub> =-250mA                                           | -     | 450  | -    |      |  |
| Turn-on Delay Time                                   | t <sub>d(ON)</sub>     | 1/ 401/ D 470                                                    | -     | 5    | -    |      |  |
| Rise Time                                            | tr                     | $V_{DD}$ =-10V, RL=47Ω,                                          | -     | 9    | -    | ns   |  |
| Turn-off Delay Time                                  | t <sub>d(OFF)</sub>    | I <sub>D</sub> ≅-200mA, V <sub>GEN</sub> =-4.5V,                 | -     | 35   | -    |      |  |
| Fall Time                                            | t <sub>f</sub>         | R <sub>G</sub> =10Ω                                              | -     | 11   | -    |      |  |

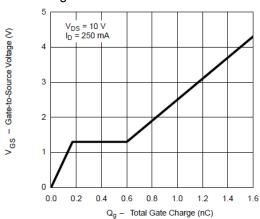
NOTE3: Pulse test: pulse width ≤300us, duty cycle≤ 2%


NOTE4: Guaranteed by design, not subject to production testing.

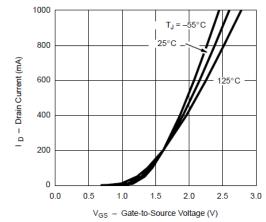



### TYPICAL CHARACTERISTICS

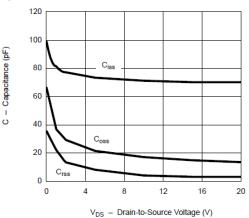
 $T_A$  = 25°C, Unless Noted. For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.


1. Output Characteristics

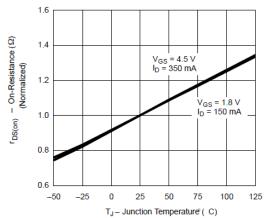



3. On-Resistance vs. Drain Current




5. Gate Charge

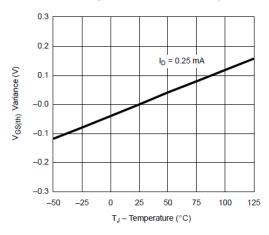



2. Transfer Characteristics

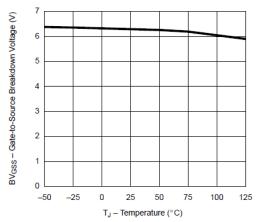


4. Capacitance

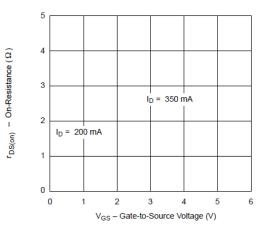



6. On-Resistance vs. Junction Temperature

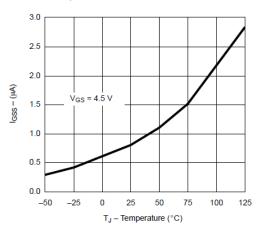




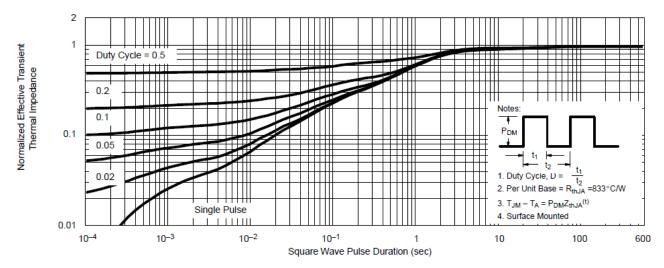

7. Source-Drain Diode Forward Voltage


- 1000 T<sub>J</sub> = 125°C I<sub>S</sub> – Source Current (mA) 100 T<sub>J</sub> = 25°C T<sub>J</sub> = −55°C 10 1 0.2 1.2 0.0 0.4 0.6 0.8 1.0 1.4 V<sub>SD</sub> – Source-to-Drain Voltage (V)
- 9. Threshold Voltage Variance vs. Temperature

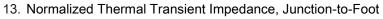


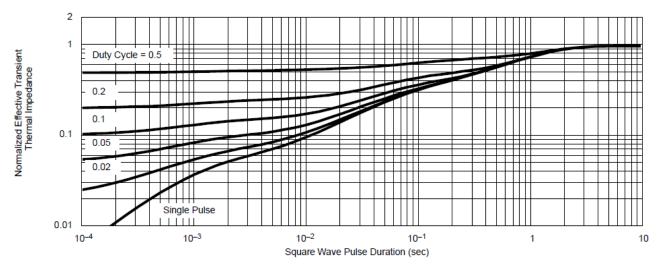

11. BV<sub>GSS</sub> vs. Temperature




8. On-Resistance vs. Gate-to-Source Voltage



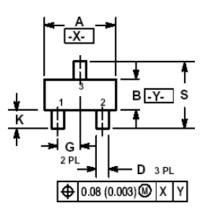

10. IGSS vs. Temperature

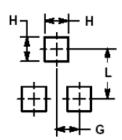


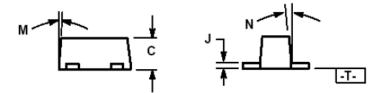





#### 12. Normalized Thermal Transient Impedance, Junction-to-Ambient (SC-75A)




# PACKAGE INFORMATION

Dimension in SC-89 (Unit: mm)







| DIM | MILLIMETERS |           | INCHES    |                  |  |
|-----|-------------|-----------|-----------|------------------|--|
|     | MIN         | MAX       | MIN       | MAX              |  |
| А   | 1.500       | 1.700     | 0.059     | 0.067            |  |
| В   | 0.750       | 0.950     | 0.030     | 0.040            |  |
| С   | 0.600       | 0.800     | 0.024     | 0.031            |  |
| D   | 0.230       | 0.330     | 0.009     | 0.013            |  |
| G   | 0.500 BSC   |           | 0.020 BSC |                  |  |
| Н   | 0.530 REF   |           | 0.021 REF |                  |  |
| J   | 0.100       | 0.200     | 0.004     | 0.008            |  |
| К   | 0.300       | 0.500     | 0.012     | 0.020            |  |
| L   | 1.100       | 1.100 REF |           | 00 REF 0.043 REF |  |
| М   | -           | 10°       | -         | 10°              |  |
| N   | -           | 10°       | -         | 10°              |  |
| S   | 1.500       | 1.700     | 0.059     | 0.067            |  |



### IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.