

DESCRIPTION

The A4730 is a Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) double-pole double-throw (DPDT) Analog Switch featuring an On-Resistance of 4.5Ω at V_{CC} =3V and a Low On Capacitance 3.7pF Typical.

The A4730 is compatible with the requirements of USB2.0 and the wide bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to channel crosstalk also minimizes interference. Break-before-make function for both parts eliminates signal disruption during switching from preventing both switches being enabled simultaneously.

The A4730 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC}=0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

The A4730 is available in TQFN10 (1.8x1.4) and MSOP10 packages.

FEATURES

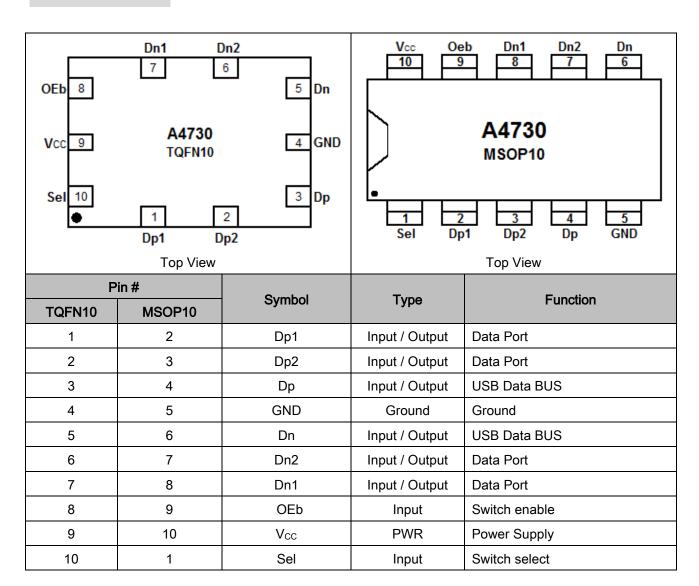
- Wide Power Supply Range: 2.3V to 5V
- Low On Capacitance 3.7pF Typical
- Low On Resistance 4.5Ω (typ.) at 3V V_{DD} when V_{SW}=0.4V
- High Bandwidth (-3db): >720MHz without C_L
 and >550MHz with C_L=5pF
- Low Power Consumption: 1uA Maximum
- ESD: pass 8kV HBM test
- Over voltage tolerance (OVT) on all USB ports up to 5.25V without external components
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Operation Temperature Range: -40°C to 85°C
- Available in TQFN10 (1.8x1.4) and MSOP10 Packages

APPLICATION

 Cell phone, PDAs, Digital camera, Notebook, LCD Monitor, TV, SET-TOP BOX

ORDERING INFORMATION

Package Type	Part Number		
TOEN40	TQ10	A4730TQ10R	
TQFN10		A4730TQ10VR	
MSOP10	MS10	A4730MS10R	
		A4730MS10VR	
	V: Halogen free Package		
Note	R: Tape & Reel		
	SPQ: 3000pcs / Reel		
AiT provides all DoUC products			


AiT provides all RoHS products

Suffix "V" means Halogen free Package

REV1.0 - APR 2014 RELEASED -

PIN DESCRIPTION

FUNCTION TABLE

OEb	Sel	Function
1	X	Disconnect
0	0	Dp , Dn=Dp1, Dn1
0	1	Dp , Dn=Dp2, Dn2

REV1.0 - APR 2014 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

Vcc, DC Supply Voltage	-0.5V~5.5V
Dpn / Dnn / Dp / Dn, DC Switch Voltage	-0.5V~V _{CC} +0.3V
V _{Oeb} / V _{Sel} , DC Input Voltage	-0.5V~V _{CC}
I _(Dpn/Dnn/Dp/Dn) , Continuous Current	-50mA~+50mA
IPEAK(Dpn/Dnn/Dp/Dn), Peak Current NOTE1	-100mA ~+100mA
T _A , Operating Temperature Range	-40°C~85°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Pulsed at 1ms, 50% duty circle

REV1.0 - APR 2014 RELEASED - - 3 -

DC ELECTRICAL CHARACTERISTICS

Typical characteristics are at +25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Analog Switch						
Analog Signal Range	V _{Pn} /V _{Nn} /V _p /V _n		0		Vcc	>
On-Resistance ^{NOET2}	R _{ON}	$V_{CC} = 3V, V_{SW} = 0.4V,$ $I_{ON} = -8mA$		4.5		Ω
On-Resistance Match Between Channels ^{NOTE3}	ΔRon	$V_{CC} = 3V, V_{SW} = 0.4V,$ $I_{ON} = -8mA$		0.1		Ω
Current						
Source Off Leakage Current	I _{Pn / Nn (OFF)}	V_{CC} =3.6V, V_p/V_n = 3.6/0.3V, V_{Pn}/V_{Nn} =0.3/3.6V	-1		1	uA
Channel on Leakage Current	I _{Pn / Nn (ON)}	V_{CC} =3.6 V , V_p / V_n = 3.6/0.3 V , V_{Pn} / V_{Nn} =3.6/0.3 V	-1		1	uA
POWER OFF leakage current	loff	$V_{CC} = 0V, V_{SW} = 0V \text{ to } 3.6V,$ Vcontrol=0 or V_{CC}	-1		1	uA
Quiescent supply current	lcc	V _{CC} =3V, Vcontrol=0 or V _{CC} , I _{OUT} =0			1	uA
Increase in ICC current per control voltage and Vcc	Ісст	V _{CC} =3.6V, Vcontrol=2.6V			4	uA
Input Leakage Current	I _{OEb} /Sel	V _{OEb / Sel} = 0 or V _{CC}			1	uA
Digital I/O						
Input Voltage High	ViH	V _{CC} = 3.0 to 3.6V	1.6			V
Input Voltage Low	V _{IL}	V _{CC} = 3.0 to 3.6V			0.5	V

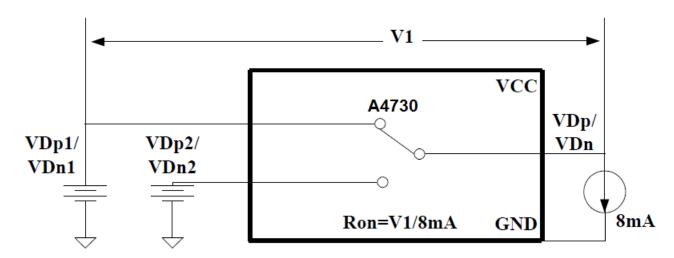
NOTE2: Measured by the voltage drop between Dpn/Dnn and Dp/Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (Dpn/Dnn and Dp/Dn ports).

NOTE3: $\Delta R_{\text{ON}}\text{=}~R_{\text{ON(MAX)}}\text{-}~R_{\text{ON(MIN)}}\text{, between Dp and Dn}$.

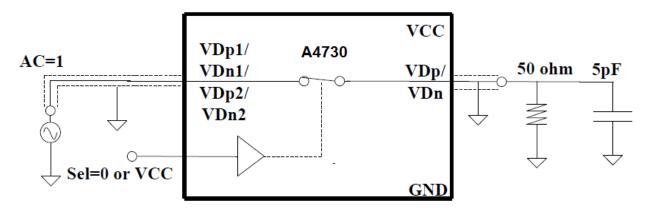
REV1.0 - APR 2014 RELEASED - - 4 -

DYNAMIC CHARACTERISTICS

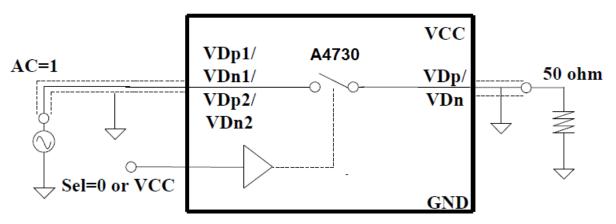
Typical characteristics are at 25°C


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
DRIVER CHARACTERISTICS							
Turn-On Time	ton	V _{CC} =3.3V, R _L =50Ω,		10	30	ns	
		C _L =5pF, V _{SW} =0.8V					
T O"T"		V_{CC} =3.3 V , R_L =50 Ω ,		20	25	ns	
Turn-Off Time	t _{OFF}	C _L =5pF,V _{SW} =0.8V					
Brook Bofore Make Time	4	V _{CC} =3.3V, R _L =50Ω,	2.0	3	6.5	ns	
Break-Before-Make Time	t BBM	C _L =5pF,V _{SW1,2} =0.8V	2.0				
Dranagation Dalay	t _{PD}	V _{CC} =3.3V, R _L =50Ω,		0.2		20	
Propagation Delay		C _L =5pF				ns	
CAPACITANCE	CAPACITANCE						
Control Capacitance	CIN	V _{CC} =0V		1.5		pF	
ON Capacitance	Con	V _{CC} =3.3V,OE=0V, f=240MHz		3.7		pF	
OFF Capacitance	Coff	V _{CC} =3.3V,OE=3.3V, f=240MHz		2.0		pF	
APPLICATION CHARACTERISTICS							
3dB Bandwidth	f 3dB	V _{CC} =3.3V,R _L =50Ω,C _L =0pF		720		MHz	
		V _{CC} =3.3V,R _L =50Ω,C _L =5pF		550		MHz	
Off IsolationNOTE4	V _{Iso}	V _{CC} =3.3V,R _L =50Ω,f=250MHz		-30		dB	
Channel crosstalk	XTALK	V _{CC} =3.3V,R _L =50Ω,f=250MHz		-35		dB	

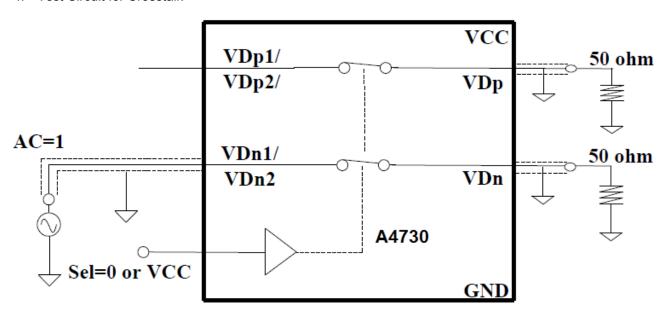
NOTE3: Off Channel Isolation = $20log_{10} [(V_{P1 \ P2})/V_P]$ or $20log_{10} [(V_{N1 \ N2})/V_N]$


REV1.0 - APR 2014 RELEASED - - 5 -

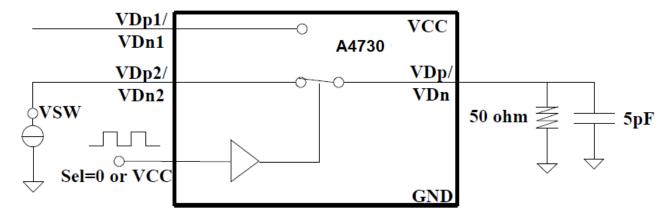
TEST CIRCUIT

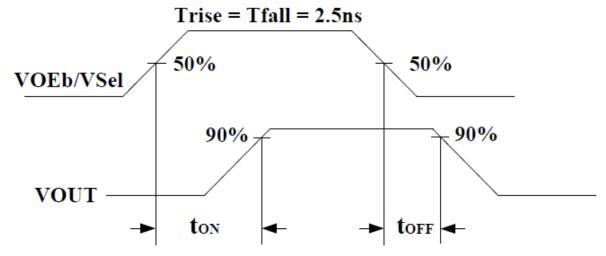

1. Test Circuit for On Resister

2. Test Circuit for Bandwidth



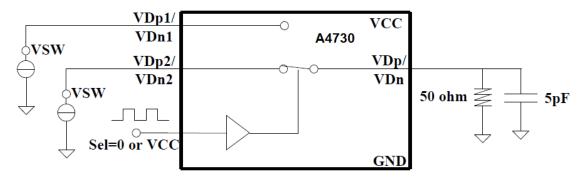
3. Test Circuit for Off Isolation

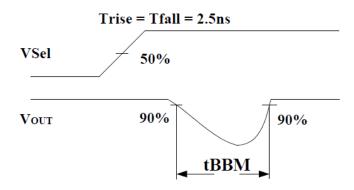



REV1.0 - APR 2014 RELEASED - - 6 -

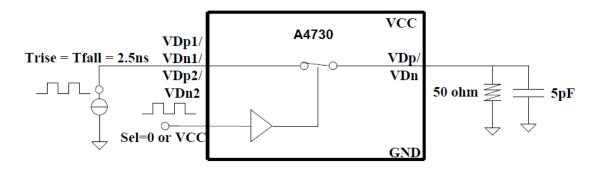
4. Test Circuit for Crosstalk

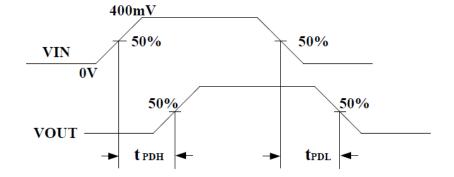
5. Test Circuit for Switch Times



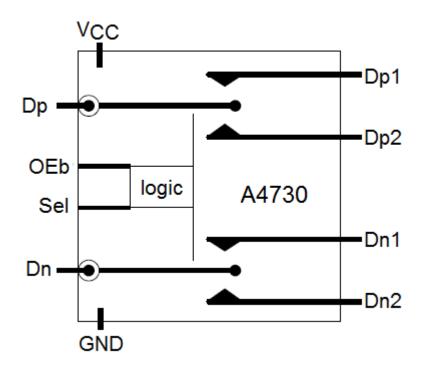


REV1.0 - APR 2014 RELEASED - - 7 -




6. Test Circuit for Break-Before-Make Time Delay, tbbm

7. Test Circuit for Propagation Delay, TPD



REV1.0 - APR 2014 RELEASED - - 8 -

BLOCK DIAGRAM

REV1.0 - APR 2014 RELEASED - - 9 -

DETAILED INFORMATION

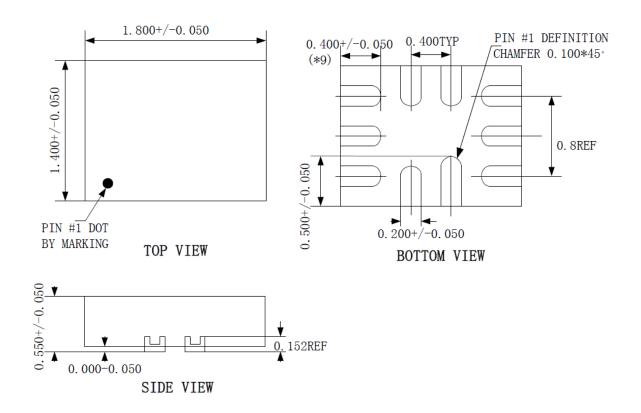
APPLICATION NOTE

Meeting USB 2.0 V_{BUS} Short Requirements

Power-Off Protection

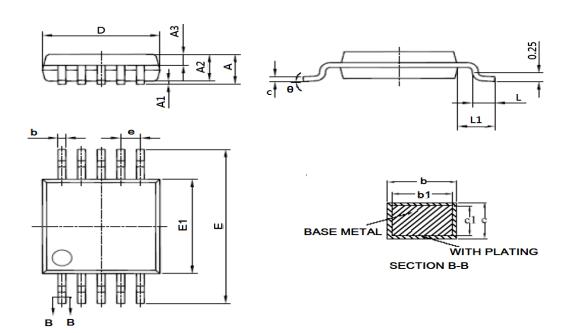
For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The A4730 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (Dp, Dn).

Power-On Protection


The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V_{CC} rail during the over-voltage event so current remains within the safe operating range.

REV1.0 - APR 2014 RELEASED - - 10 -

PACKAGE INFORMATION


Dimension in TQFN10 (Unit: mm)

REV1.0 - APR 2014 RELEASED - - 11 -

Dimension in MSOP10 (1.8x1.4) (Unit: mm)

Symbol	Min	Max	
Α	1	1.100	
A1	0.050	0.150	
A2	0.750	0.950	
А3	0.300	0.400	
b	0.190	0.280	
b1	0.180	0.230	
С	0.150	0.200	
c1	0.140	0.160	
D	2.900	3.100	
E	4.700	5.100	
E1	2.900	3.100	
е	0.500(BSC)		
L	0.400	0.700	
L1	0.950(BSC)		
θ	0°	8°	

REV1.0 - APR 2014 RELEASED - - 12 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - APR 2014 RELEASED - - 13 -