

DESCRIPTION

The A4722 is a quad, low on-resistance, low voltage, bidirectional, single-pole/double-throw (SPDT) CMOS analog switch that is designed to operate from a single +1.8V to +4.2V power supply. Targeted applications include battery powered equipment that benefit from low R_{ON} (0.5 Ω) and fast switching speeds (t_{ON} = 52 ns, t_{OFF} = 25 ns).

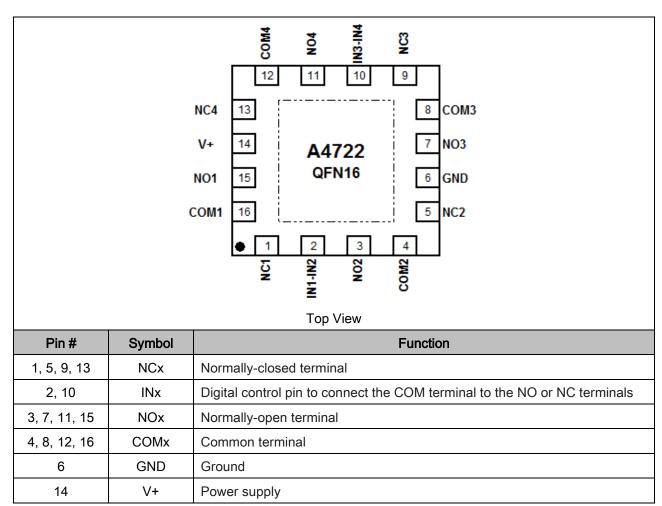
The A4722 consists of four SPDT switches. It is configured as a dual double-pole/double-throw (DPDT) device with two logic control inputs that control two SPDT switches each. The configuration can be used as a dual differential 2-to-1 multiplexer/demultiplexer.

The A4722 is available in QFN16 package.

ORDERING INFORMATION

Package Type	Part Number				
QFN16	016	A4722Q16R			
SPQ: 3,000pcs/Reel	Q16	A4722Q16VR			
Note	V: Halogen free Package				
Note	R: Tape & Reel				
AiT provides all RoHS products					

FEATURES


- Low Voltage Operation: 1. 8V to 4. 2V
- Low On-Resistance: 0. 5Ω(TYP)
- Low On-Resistance Flatness
- –3dB Bandwidth: 70MHz
- Fast Switching Time(4.2V)
 ton 52ns
 toff 25ns
- Rail-to-Rail Operation
- Typical Power Consumption (<0.01 μW)
- TTL/CMOS Compatible
- Available in QFN16 Package

APPLICATION

- Communication Systems
- Cell Phones
- Portable Instrumentation
- Audio Signal Routing
- Audio and Video Switching
- PCMCIA Cards
- Computer Peripherals
- Modems
- PDAs

PIN DESCRIPTION

NOTE: NOx, NCx and COMx terminal may be an input or output.

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0V ~ +4.6V
Analog, Digital voltage rangeNOTE1	- 0.3V ~ V+ + 0.3V
Continuous Current NO, NC, or COM	±200mA
Peak Current NO, NC, or COM	±350mA
Operating Temperature Range	-40°C ~ 85°C
Junction Temperature	150°C
Storage Temperature	-65°C ~ +150°C
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
НВМ	4000V
MM	400V

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Signals on NC, NO, or COM or INx exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

ELECTRICAL CHARACTERISTICS

V+ = +4.2V, GND = 0V, $V_{IH} = +1.6 \ V$, $V_{IL} = +0.6V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at V+ = +4.2V, T_A = + 25°C, unless otherwise noted.

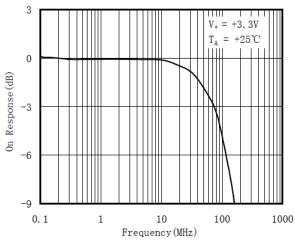
Parameter	Symbol	Conditions	TEMP	Min.	Тур.	Max.	Unit
ANALOG SWITCH							
Analog Signal Range	V _{NO} , V _{NC} ,	- 40°C to +8		0	-	V+	V
On-Resistance			+25°C	-	0.5	0.75	Ω
		Test Circuit 1	- 40°C to +85°C	ı	-	0.85	Ω
On-Resistance Match	ΔRon	V+ = 4.2V, V _{NO} or V _{NC} = 1V, I _{COM} = -100mA,	+25°C	-	0.05	0.15	Ω
Between Channels		Test Circuit 1	- 40°C to +85°C	-	0.1	0.2	Ω
On-Resistance Flatness	RFLAT(ON)	$V+ = 4.2V$, V_{NO} or V_{NC} = 1V, $I_{COM} = -100$ mA,	+25°C	-	0.1	0.22	Ω
	NFLAT(ON)	Test Circuit 1	- 40°C to +85°C	-	-	0.26	Ω
Source OFF Leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$V+ = 4.2V$, V_{NO} or V_{NC} = 3.3V/ 0.3V, $V_{COM} = 0.3V/ 3.3V$	- 40°C to +85°C	-	-	1	μΑ
Channel ON Leakage current	Inc(on), Ino(on), Icom(on)	$V+ = 4.2V, V_{COM} = 0.3V/3.3V,$ $V_{NO} \text{ or } V_{NC} = 0.3V/3.3V, \text{ or floating}$	- 40°C to +85°C	-	-	1	μΑ
DIGITAL INPUTS							
Input High Voltage	VINH		- 40°C to +85°C	1.6	-	-	V
Input Low Voltage	V _{INL}		- 40°C to +85°C	-	-	0.5	V
Input Leakage Current	lin	V+ = 4.2V, V _{IN} = 0 or 4.2V	- 40°C to +85°C	-	-	1	μΑ

Parameter	Symbol	Conditions		TEMP	Min.	Тур.	Max.	Unit	
DYNAMIC CHARACTERISTICS									
Turn-On Time	ton	$V+ = 4.2V, V_{COM} = 2$	0V, R _L =	•	+25°C	-	52	-	ns
Turn-Off Time	t off	50Ω , C_L = 35pF, Tes	st Circuit	2	+25°C	-	25	-	ns
Charge Injection,	Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω Test Circuit 3		+25°C	-	30	-	рС	
Break-Before-Make Time Delay	t⊳		V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Test Circuit 4		+25°C	-	8	-	ns
Off Isolation	Oiso	Signal = 0dBm, V _{NO} or V _{NC}	f = 100k	кНz	+25°C	-	-75	-	dB
		centered between V+ and GND , R_L = 50Ω , Test Circuit 5	f = 1MH	lz	+25°C	-	-55	-	dB
Channel-to-Channel	X _{TALK}	Signal = 0dBm,	f = 1MH	lz	+25°C	-	-103	-	dB
Crosstalk	∧ TALK	Test Circuit 6	f = 10M	Hz	+25°C	-	-65	-	dB
Bandwidth –3 dB	BW	Signal = 0dBm, Tes	t Circuit 7	7	+25°C	-	70	-	MHz
Channel ON Capacitance	CNC(ON), CNO(ON), CCOM(ON)	f = 1MHz		+25°C	-	80	-	pF	
POWER REQUIREMENTS									
Power Supply Range	V+		- 40)°C t	o +85°C	1.8	-	4.2	V
Power Supply Current	l+	V+ = 4.2V, V _{IN} = 0V or V+ - 40°C to		o +85°C	-	-	1	μΑ	

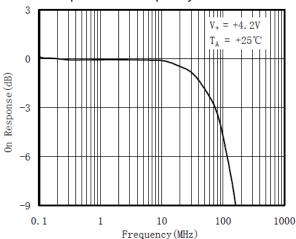
ELECTRICAL CHARACTERISTICS

V+ = +2.7 to +3.6V, GND = 0V, V_{IH} = +1.6 V, V_{IL} = +0.4V, T_A = - 40°C to +85°C. Typical values are at V+ = +3.0V, T_A = + 25°C, unless otherwise noted.

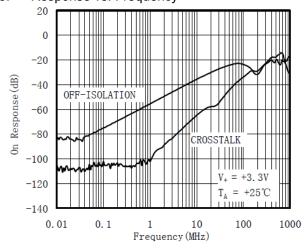
Parameter	Symbol	Conditions	TEMP	Min.	Тур.	Max.	Unit
ANALOG SWITCH							
Analog Signal Range	V _{NO} , V _{NC} ,		- 40°C to +85°C	0	-	V+	V
	Ron	V+ = 2.7V, V _{NO} or V _{NC}	+25°C	-	0.6	0.9	Ω
On-Resistance		= 1V, I _{COM} = -100mA, Test Circuit 1	- 40°C to +85°C	-	-	1	Ω
On-Resistance Match	ΔRon	V+ = 2.7V, V _{NO} or V _{NC}	+25°C	-	0.15	0.2	Ω
Between Channels		= 1V, I _{COM} = -100mA, Test Circuit 1	- 40°C to +85°C	ı	0.15	0.24	Ω
On-Resistance Flatness	Rflat(0N)	$V+ = 2.7V$, V_{NO} or V_{NC}	+25°C	-	0.05	0.15	Ω
		= 1V, I _{COM} = -100mA, Test Circuit 1	- 40°C to +85°C	1	0.1	0.2	Ω
Source OFF Leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$V+ = 3.6V$, V_{NO} or V_{NC} = 3.3V/ 0.3V, $V_{COM} = 0.3V/ 3.3V$	- 40°C to +85°C	-	-	1	μΑ
Channel ON Leakage current	Inc(on), Ino(on), Icom(on)	$V+ = 3.6V, V_{COM} = 0.3V/ 3.3V,$ $V_{NO} \text{ or } V_{NC} = 0.3V/$ $3.3V, \text{ or floating}$	- 40°C to +85°C	ŀ	-	1	μΑ
DIGITAL INPUTS							
Input High Voltage	VINH		- 40°C to +85°C	1.5	-	-	V
Input Low Voltage	V _{INL}		- 40°C to +85°C	1	-	0.4	V
Input Leakage Current	l _{IN}	V+ = 2.7V, V _{IN} = 0 or 2.7V	- 40°C to +85°C	-	-	1	μΑ

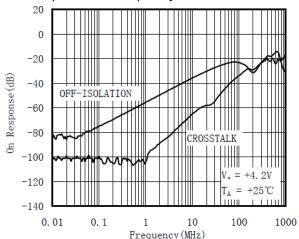


Parameter	Symbol	Conditions		TEMP	Min.	Тур.	Max.	Unit
DYNAMIC CHARACTERISTICS								
Turn-On Time	ton	$V+ = 3.3V, V_{COM} = 2$.0V, R _L =	+25°C	-	54	-	ns
Turn-Off Time	toff	50Ω, C _L = 35pF, Tes	st Circuit 2	+25°C	-	38	-	ns
Charge Injection	Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω Test Circuit 3		+25°C	-	26	-	рС
Break-Before-Make Time Delay	t⊳	V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Test Circuit 4		+25°C	-	12	-	ns
	0	Signal = 0dBm, V _{NO} or V _{NC}	f = 100kHz	+25°C	-	-75	-	dB
Off Isolation	Oıso	centered between $ V + \text{ and GND }, R_L = \\ 50\Omega, Test Circuit 5 $	f = 1MHz	+25°C	1	-55	1	dB
Channel-to-Channel	~	Signal = 0dBm,	f = 1MHz	+25°C	1	-103	1	dB
Crosstalk	X _{TALK}	Test Circuit 6	f = 10MHz	+25°C	-	-65	-	dB
Bandwidth –3 dB	BW	Signal = 0dBm, Test Circuit 7		+25°C	-	70	-	MHz
Channel ON Capacitance	CNC(ON), CNO(ON), CCOM(ON)	f = 1MHz		+25°C	-	80	-	pF

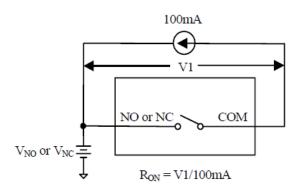


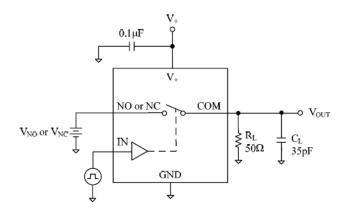
TYPICAL PERFORMANCE CHARACTERISTICS

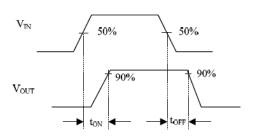

1. On Response vs. Frequency


2. On Response vs. Frequency

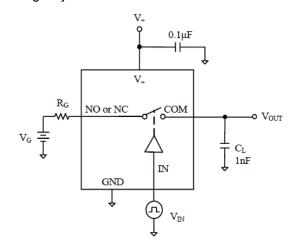
3. Response vs. Frequency

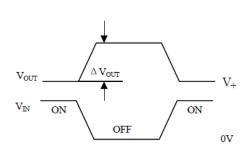

4. Response vs. Frequency

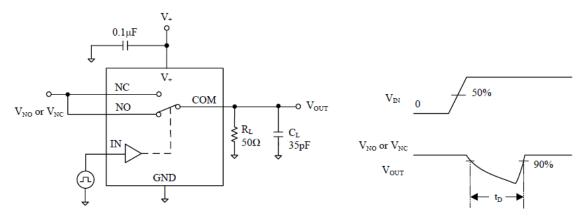


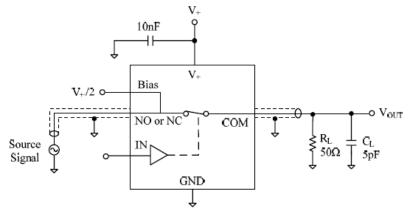

TEST CIRCUITS

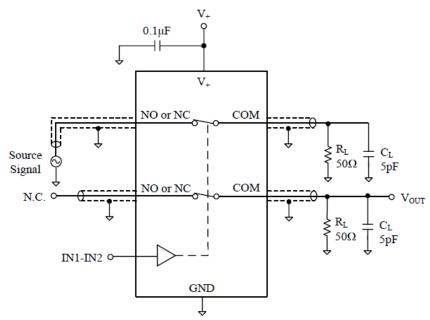
1. On Resistance



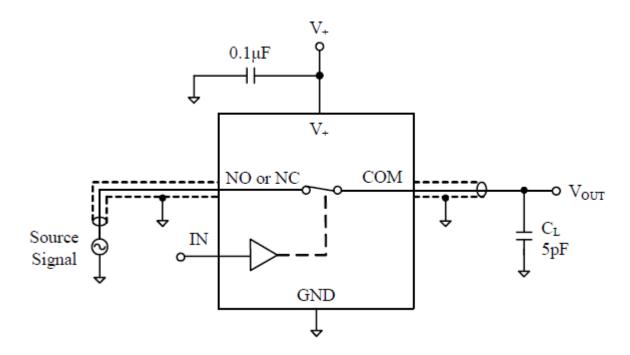

2. Switching Times

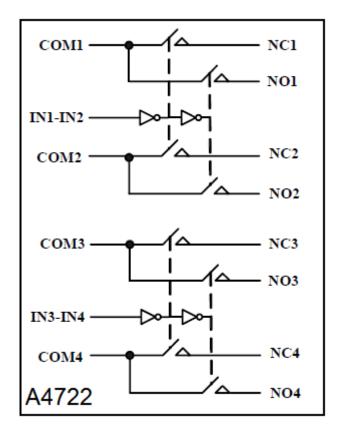

3. Charge Injection



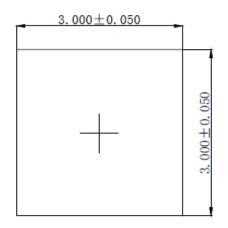

4. Break-Before-Make Time Delay, to

5. Off Isolation

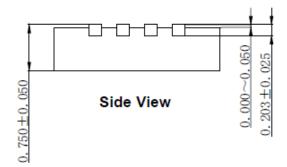

6. Channel-to-Channel Crosstalk


Channel To Channel Crosstalk = $-20 \times log - \frac{V_{NO} \text{ or } V_{NC}}{V_{OUT}}$

7. Bandwidth



BLOCK DIAGRAM



PACKAGE INFORMATION

Dimension in QFN16 (Unit: mm)

Top View

Bottom View

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.