

DESCRIPTION

The A4056B is a complete constant-current /constant-voltage linear charger for single cell lithium-ion batteries. Its SOT package and low external component count make the A4056B ideally suited for portable applications especially in USB power specifications.

Internal MOSFET architecture makes A4056B no external sense resistor needed, and no blocking diode is required. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The A4056B automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

When the input supply (wall adapter or USB supply) is removed, the A4056B automatically enters a low current state, dropping the battery drain current to less than $2\mu A$. The A4056B can be put into shutdown mode, reducing the supply current to $25\mu A$.

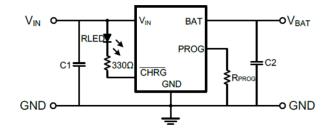
When battery reversed, the internal protected the BAT pin throughout about 0.7mA current from GND. Also, The BAT pin has a 7KV ESD (HBM) capability.

Other features include charge current monitor, under-voltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.

The A4056B is available in SOT-25 and SOT89-5 packages.

ORDERING INFORMATION

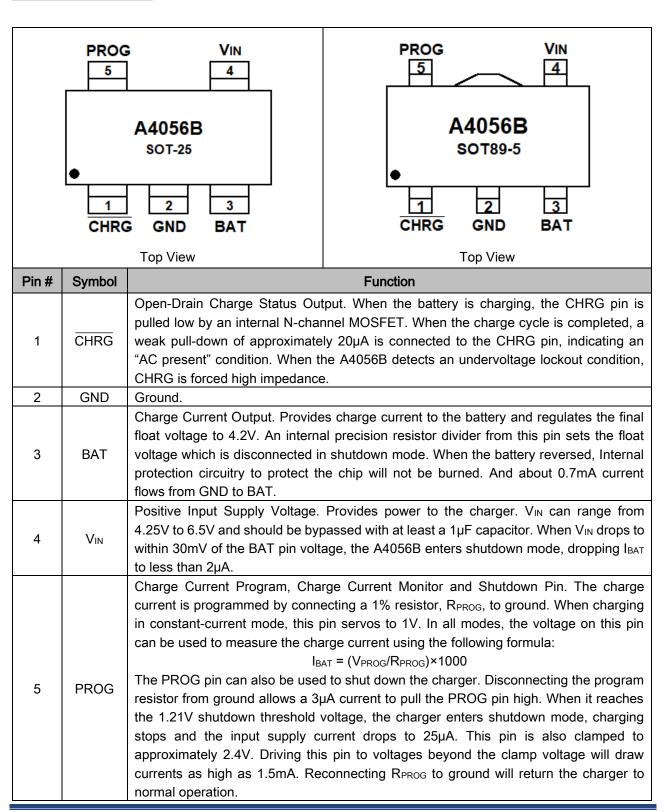
Package Type	Part Number		
SOT-25		A4056BE5R	
SPQ: 3,000pcs/Reel	E5	A4056BE5VR	
SOT89-5	VE	A4056BK5R	
SPQ: 1,000pcs/Reel	K5	A4056BK5VR	
Note	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- Programmable Charge Current Up to 500mA
- No MOSFET, Sense Resistor or Blocking Diode Required
- Complete Linear Charger in SOT Package for single Cell Lithium-Ion Batteries
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- Charges Single Cell Li-Ion Batteries Directly from USB Port
- Preset 4.2V Charge Voltage with ±1% Accuracy
- Charge Current Monitor Output for Gas Gauging
- Automatic Recharge
- Charge Status Output Pin
- C/10 Charge Termination
- 25µA Supply Current in Shutdown
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current
- Battery reversed protection
- 7KV ESD(HBM) capability
- Available in SOT-25 and SOT89-5 packages

APPLICATION

- Cellular Telephones, PDAs, MP3 Players
- Charging Docks and Cradles
- Bluetooth Applications


TYPICAL APPLICATION

NOTE: C1=4.7uF, C2=10uF, I_{BAT} =(V_{PROG}/R_{PROG})*1000

REV1.0 - OCT 2020 RELEASED - - 1 -

PIN DESCRIPTION

REV1.0 - OCT 2020 RELEASED - - 2 -

A4056B

BATTERY MANAGEMENT STANDALONE LINEAR LI-ION BATTERY CHARGER WITH THERMAL REGULATION

ABSOLUTE MAXIMUM RATINGS

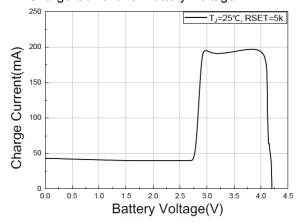
V _{IN} , Input Supply Voltage		V _{SS} -0.3V ~ V _{SS} +7V
V _{PROG} , PROG pin Voltage		V_{SS} -0.3 $V \sim V_{IN}$ +0.3 V
V _{BAT} , BAT pin Voltage		Vss-0.3V ~ 7V
V _{CHRG} , CHRG pin Voltage		V_{SS} -0.3 $V \sim V_{SS}$ +7 V
D. Dawar Dissination	SOT-25	250mW
P _D , Power Dissipation	SOT89-5	500mW
I _{BAT} , BAT pin Current		500mA
I _{PROG} , PROG pin Current		Αμ008
T _{OPA} , Operating Ambient Temperature		-40°C ~ +85°C
T _{STR} , Storage Temperature		-65°C ~ +125°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

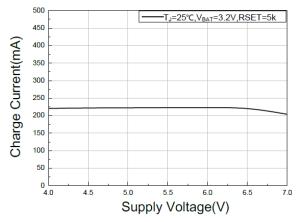
REV1.0 - OCT 2020 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

T_A=25°C, unless otherwise noted

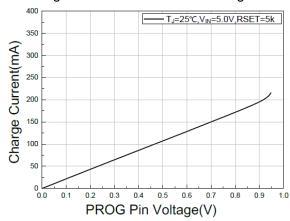

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input Supply Voltage	Vin		4.25	-	6.5	V	
land Comple Compat	lın	Charge mode, R _{PROG} =10k	-	300	2000	- μΑ	
		Standby mode	-	200	500		
Input Supply Current		Shutdown mode (R _{PROG} not connected, V _{IN} <v<sub>BAT or V_{IN}<v<sub>UV)</v<sub></v<sub>	-	25	50		
Regulated Output Voltage	V _{FLOAT}	0°C≤T _A ≤85°C, I _{BAT} =40mA	4.16	4.2	4.25	V	
	Іват	R _{PROG} =10k,Current mode	93	100	107	mA	
		R _{PROG} =2k,Current mode	465	500	535	mA	
DAT nin Current		Standby mode, V _{BAT} =4.2V	0	-2.5	-6	μΑ	
BAT pin Current		Shutdown mode	-	1	2	2 μΑ	
		Battery reverse mode, V _{BAT} =-4V	-	0.7	- mA		
		Sleep mode, V _{IN} =0V	-	1	2	μΑ	
Trickle Charge Current	I _{TRIKL}	VBAT <vtrikl, rprog="5k</td"><td>30</td><td>40</td><td>50</td><td>mA</td></vtrikl,>	30	40	50	mA	
Trickle charge Threshold Voltage	V _{TRIKL}	R _{PROG} =10k , V _{BAT} Rising	2.8	2.9	3.0	V	
Trickle Voltage Hysteresis Voltage	VTRHYS	R _{PROG} =10k	60	80	110	mV	
V _{IN} Undervoltage Lockout Threshold	Vuv	From V _{IN} low to high	3.7	3.8	3.93	V	
V _{IN} Undervoltage Lockout Hysteresis	V _{UVHYS}		150	200	300	mV	
Manual Shutdown	\	PROG pin rising	1.15	1.21	1.30		
Threshold Voltage	Vmsd	PROG pin falling 0.9		1.0	1.1	V	
V _{IN} -V _{BAT} Lockout Threshold	\	V _{IN} from low to high	70	100	140	>/	
Voltage	Vasd	V _{IN} from high to low	5 30 5		50	mV	
C/10 Termination Current	14	R _{PROG} =10k	0.085	0.10	0.115	mA/	
Threshold	Iterm	R _{PROG} =2k	0.085	0.10	0.115	mA	
PROG pin Voltage	V _{PROG}	R _{PROG} =10k, Current mode	0.93	1.0	1.07	V	
CHRG pin Weak Pull-Down Current	Ichrg	V _{CHRG} =5V	8	20	35	μΑ	
CHRG pin Output Low Voltage	Vchrg	I _{CHRG} =5mA	-	0.35	0.6	V	
Recharge Battery Threshold Voltage	ΔV_{RECG}	VFLOAT - VRECHRG	-	100	200	mV	

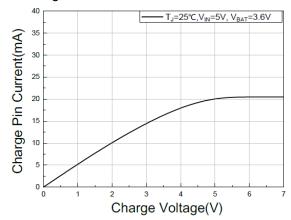
REV1.0 - OCT 2020 RELEASED - - 4 -

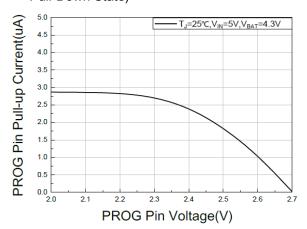


TYPICAL PERFORMANCE CHARACTERISTICS

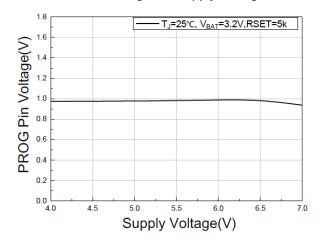

1. Charge Current vs. Battery Voltage

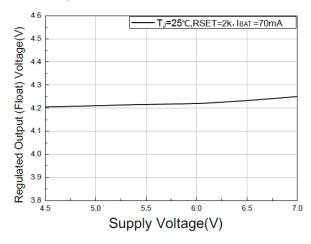

3. Charge Current vs. Supply Voltage


Charge Pin Current vs. Charge Voltage (Weak Pull-Down State)

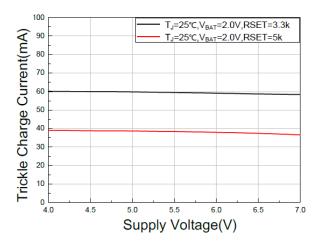

2. Charge Current vs. PROG Pin Voltage

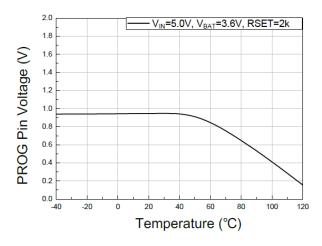
 PROG Pin Pull-up Current vs. PROG Pin Voltage

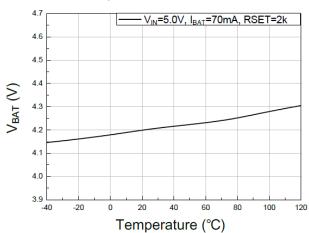

Charge Pin Current vs. Charge Voltage (Strong Pull-Down State)


REV1.0 - OCT 2020 RELEASED - - 5 -

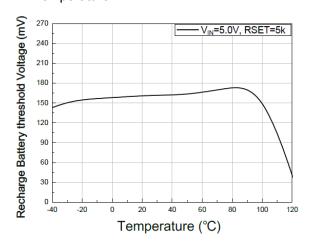

7. PROG Pin Voltage vs. Supply Voltage

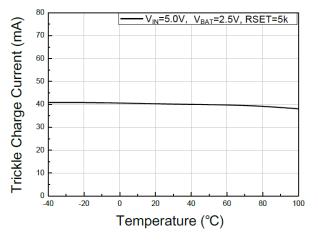

 Regulated Output (Float) Voltage vs. Supply Voltage

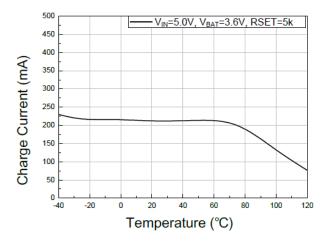

11. PROG Pin Pull-up Current vs. Temperature

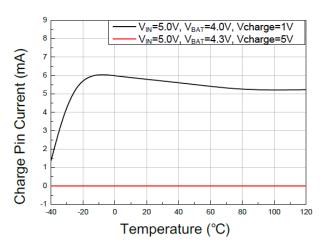

8. Trickle Charge Current vs. Supply Voltage

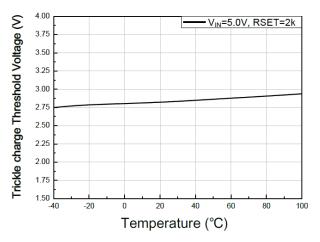
10. PROG Pin Voltage vs. Temperature

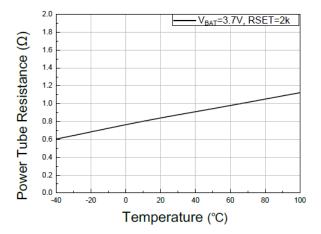

12. VBAT vs. Temperature


REV1.0 - OCT 2020 RELEASED - - 6 -

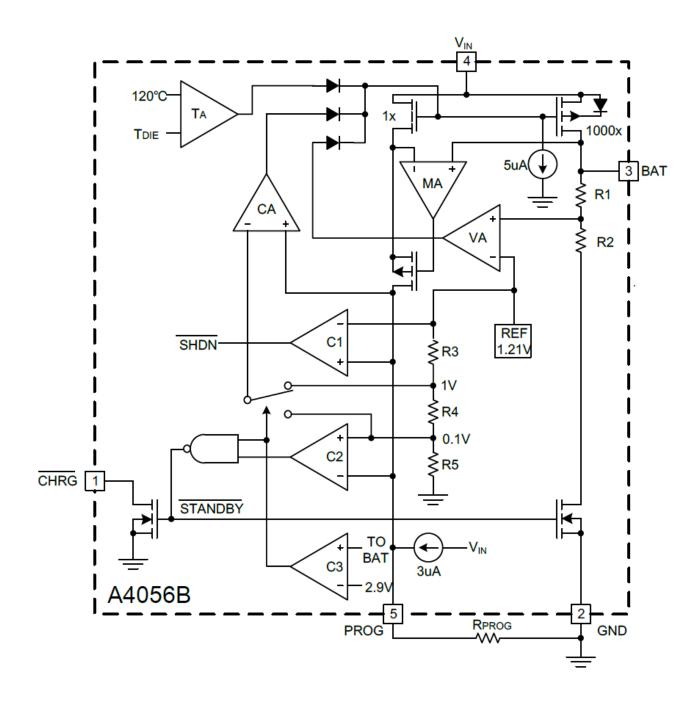

 Recharge Battery Threshold Voltage vs. Temperature


15. Trickle Charge Current vs. Temperature

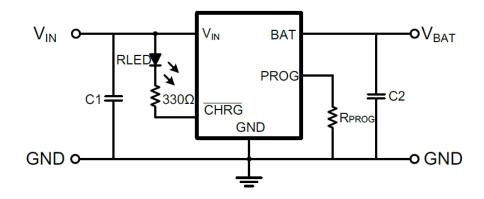

17. Charge Current vs. Temperature


14. Charge Pin Current vs. Temperature

Trickle charge Threshold Voltage vs.
 Temperature


18. Power Tube Resistance vs. Temperature

REV1.0 - OCT 2020 RELEASED - - 7 -


BLOCK DIAGRAM

REV1.0 - OCT 2020 RELEASED - -8 -

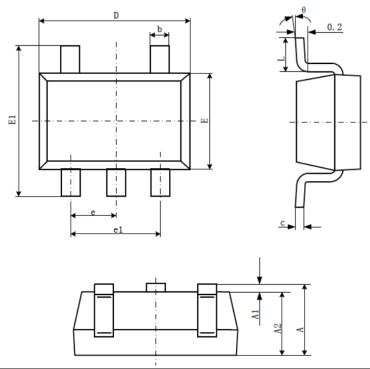
APPLICATION INFORMATION

Setting Charging Current

In constant current mode, the formula for calculating charging current is ICH = 1000 / R_{PROG} . ICH represents the charging current in amperes, R_{PROG} represents the resistance of the PROG pin to the ground in ohms. For example, if a charge current of 500mA is required, the following formula can be used: RISET = 1000/0.5 = $2k\Omega$

In order to ensure good stability and temperature characteristics, RISET recommends the use of metal film resistors with accuracy of 1%. Charging current can be detected by measuring the voltage of ISET. Charging current can be calculated by the following formula: $ICH = (V_{PROG} / R_{PROG}) *1000$

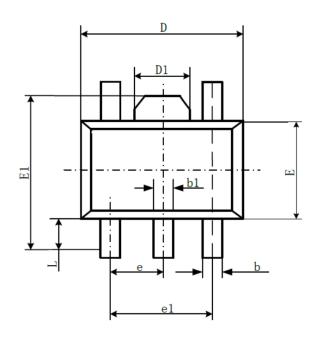
Setting Charging Current

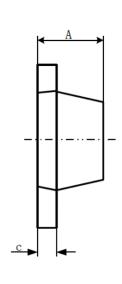

Suggested capacitance values: C1 = 4.7uF, C2 = 10uF, and PCB board requires that the connected capacitor be as close as possible to the chip.

REV1.0 - OCT 2020 RELEASED - - 9 -

PACKAGE INFORMATION

Dimension in SOT-25 Package (Unit: mm)




Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

REV1.0 - OCT 2020 RELEASED - - 10 -

Dimension in SOT89-5 Package (Unit: mm)

Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.400	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	

REV1.0 - OCT 2020 RELEASED - - 11 -

A4056B

BATTERY MANAGEMENT STANDALONE LINEAR LI-ION BATTERY CHARGER WITH THERMAL REGULATION

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - OCT 2020 RELEASED - - 12 -