AiT Semiconductor Inc.

DESCRIPTION

The A4056 is a complete constant-current /constant -voltage linear charger for single cell lithium-ion batteries. Its Thin SOT package and low external component count make the A4056 ideally suited for portable applications. Furthermore, the A4056 is specifically designed to work within USB power specifications.

No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The A4056 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

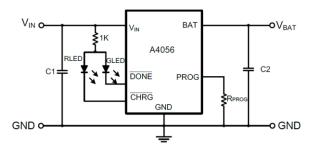
When the input supply (wall adapter or USB supply) is removed, the A4056 automatically enters a low current state, dropping the battery drain current to less than 2μ A. The A4056 can be put into shutdown mode, reducing the supply current to 25μ A.

Other features include charge current monitor, under-voltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.

The A4056 is available in SOT-26 package.

ORDERING INFORMATION

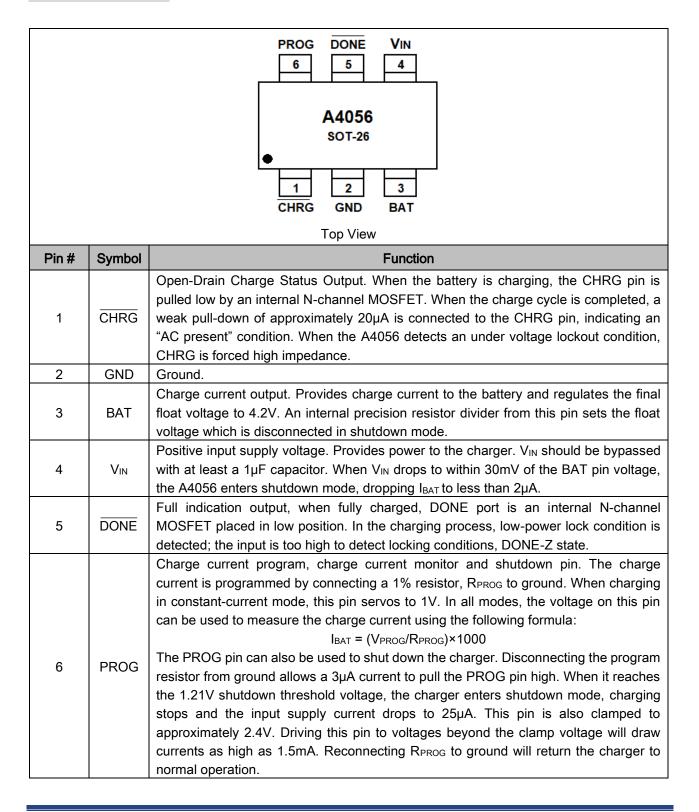
Package Type	Part Number			
SOT-26	E6	A4056E6R		
SPQ: 3,000pcs/Reel	EO	A4056E6VR		
Noto	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Programmable charge current up to 500mA
- No MOSFET, sense resistor or blocking diode required
- Complete linear charger in Thin SOT package for single cell lithium-ion batteries
- Constant-current/constant-voltage operation with thermal regulation to maximize charge rate without risk of overheating
- Charges single cell li-ion batteries directly from USB port
- Preset 4.2V charge voltage with 1% accuracy
- Charge current monitor output for gas gauging
- Charge status output pin
- C/10 charge termination
- 25µA supply current in shutdown
- 2.9V trickle charge threshold (A4056)
- Soft-start limits inrush current
- Available in SOT-26 package

APPLICATION

- Cellular Telephones, PDAs, MP3 Players
- Bluetooth Applications


TYPICAL APPLICATION

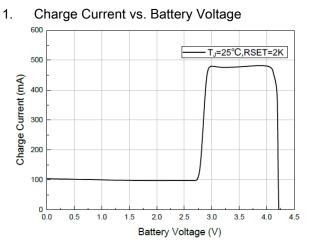
NOTE: C1=4.7uF, C2=10uF, I_{BAT} =(V_{PROG}/R_{PROG})*1000

PIN DESCRIPTION

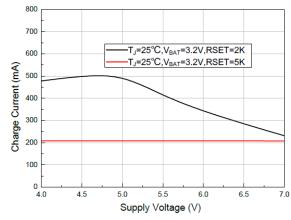
ABSOLUTE MAXIMUM RATINGS

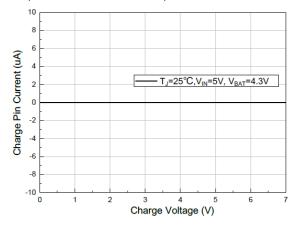
V _{IN} , Input Supply Voltage	V_{SS} -0.3V ~ V_{SS} +10V			
VPROG, PROG pin Voltage	V_{SS} -0.3V ~ V_{IN} +0.3V			
V _{BAT} , BAT pin Voltage	V _{SS} -0.3V ~ 7V			
V _{CHRG} , CHAG pin Voltage		V _{SS} -0.3V ~ V _{SS} +10		
P _D , Power Dissipation	SOT-26	250mW		
I _{BAT} , BAT pin Current		500mA		
IPROG, PROG pin Current		800µA		
TOPA, Operating Ambient Temperature		-40°C ~ +85°C		
T _{STR} , Storage Temperature		-65°C ~ +125°C		

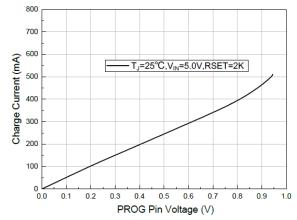
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

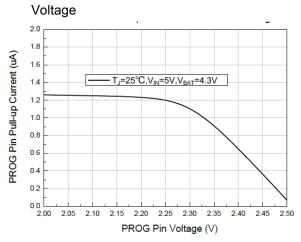

ELECTRICAL CHARACTERISTICS

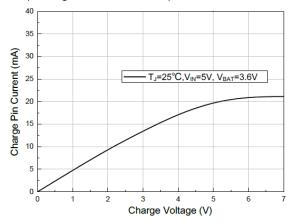
T_A=25°C, unless otherwise noted

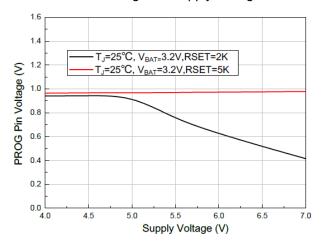

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input Supply Voltage	VIN		4.25	-	6.5	V	
Input Supply Current	lcc	Charge mode, RPROG=10k	-	300	2000		
		Standby mode	-	200	500		
		Shutdown mode (RPROG not		05	50	μA	
		connected, V_{IN} <v<sub>BAT or V_{IN}<v<sub>UV)</v<sub></v<sub>	-	25	50		
Regulated Output Voltage	V _{FLOAT}	0°C≤T _A ≤85°C, I _{BAT} =40mA	4.16	4.2	4.25	V	
		R _{PROG} =10k, Current mode	93	100	107	mA	
		RPROG=2k, Current mode	465	500	535		
BAT Pin Current	I _{BAT}	Standby mode, V _{BAT} =4.2V	0	-2.5	-6	μA	
		Shutdown mode	-	1	2		
		Sleep mode, V _{IN} =0V	-	1	2		
Trickle Charge Current	Itrikl	VBAT <vtrikl, rprog="2k</td"><td>93</td><td>100</td><td>107</td><td>mA</td></vtrikl,>	93	100	107	mA	
Trickle Charge Threshold Voltage	Vtrikl	R _{PROG} =10k, V _{BAT} Rising	2.8	2.9	3.0	V	
Trickle Voltage Hysteresis Voltage	V _{TRHYS}	R _{PROG} =10k	60	80	110	mV	
V _{IN} Undervoltage Lockout Threshold	Vuv	From V _{IN} low to high	3.7	3.8	3.93	V	
V _{IN} Undervoltage Lockout Hysteresis	VUVHYS		150	200	300	mV	
Manual Shutdown		PROG pin rising	1.15	1.21	1.30		
Threshold Voltage	Vmsd	PROG pin falling	0.9	1.0	1.1	V	
VIN-VBAT Lockout Threshold		VIN from low to high	70	100	140		
Voltage	Vasd	V_{IN} from high to low	5	30	50	mV	
C/10 Termination Current		R _{PROG} =10k	0.085	0.10	0.115	mA/	
Threshold	Iterm	R _{PROG} =2k	0.085	0.10	0.115	mA	
PROG Pin Voltage	VPROG	R _{PROG} =10k, Current mode	0.93	1.0	1.07	V	
CHRG Pin Weak Pull-Down			0	20	35	μA	
Current	ICHRG	V _{CHRG} =5V	8				
CHRG Pin Output Low	Vere		-	0.35	0.6	V	
Voltage	VCHRG	I _{CHRG} =5mA					
Recharge Battery threshold Voltage	ΔV_{RECG}	VFLOAT - VRECHRG	-	100	200	mV	


TYPICAL PERFORMANCE CHARACTERISTICS

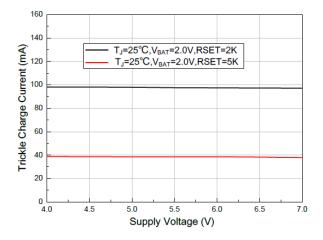

3. Charge Current vs. Supply Voltage

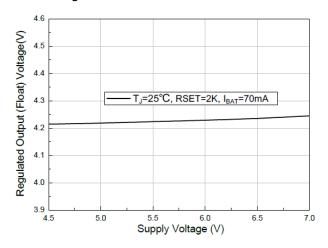

 Charge Pin Current vs. Charge Voltage (Weak Pull-Down State)


2. Charge Current vs. PROG Pin Voltage

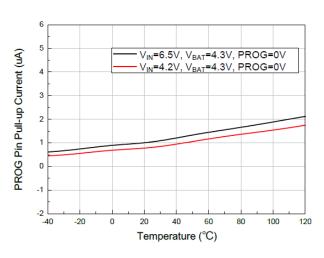

4. PROG Pin Pull-up Current vs. PROG Pin

 Charge Pin Current vs. Charge Voltage (Strong Pull-Down State)

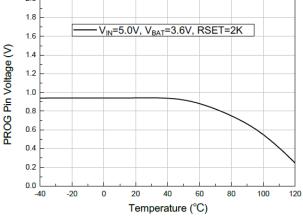




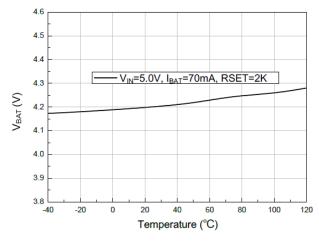
7. PROG Pin Voltage vs. Supply Voltage



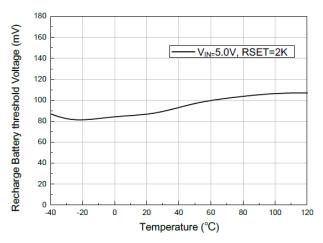
Regulated Output (Float) Voltage vs. Supply 9. Voltage

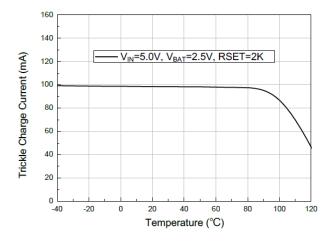


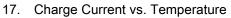
11. PROG Pin Pull-up Current vs. Temperature

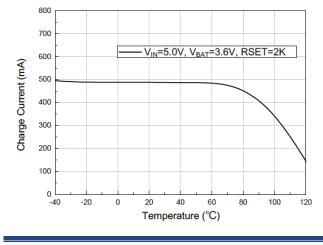


10. PROG Pin Voltage vs. Temperature

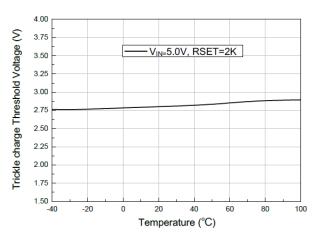




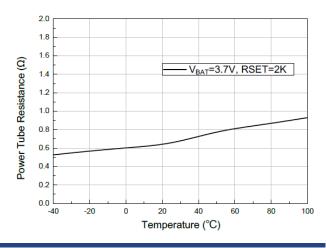

13. Recharge Battery threshold Voltage vs.


Temperature

15. Trickle Charge Current vs. Temperature

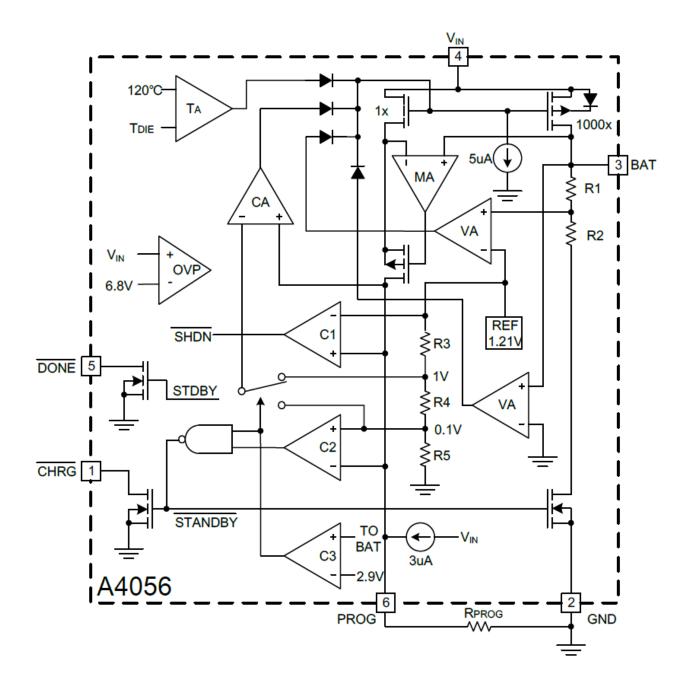


9 V_{IN}=5.0V, V_{BAT}=4.0V, Vcharge=1V V_{IN}=5.0V, V_{BAT}=4.3V, Vcharge=5V 8 Charge Pin Current (mA) 5 4 3 2 1 0 -1 100 -40 -20 0 20 40 60 80 120 Temperature (°C)

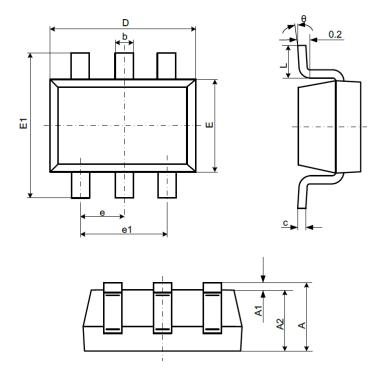

Charge Pin Current vs. Temperature

14.

16. Trickle charge Threshold Voltage vs. Temperature



18. Power Tube Resistance vs. Temperature


BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOT-26 Package (Unit: mm)

Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.