

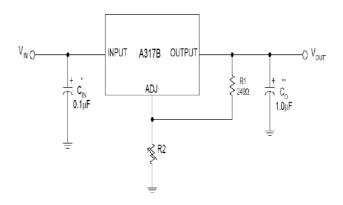
DESCRIPTION

The A317B is an adjustable 3-terminal positive voltage regulator, designed to supply more than 1.5A of output current with voltage adjustable from 1.3V~37V.

The A317B is available in TO220-3, TO-252 and TO-263 Packages.

ORDERING INFORMATION

Package Type	Part Number			
TO220-3	Т3	A317BT3U		
10220-3		A317BT3VU		
TO-252	D	A317BDR		
		A317BDVR		
TO-263	S	A317BSR		
		A317BSVR		
	V: Halogen free Package			
Note	R: Tape & Reel			
	U: Tube			
AiT provides all RoHS products				


FEATURES

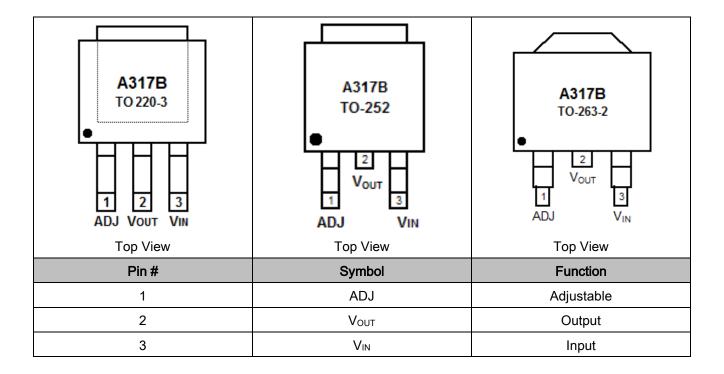
- Output current up to 1.5A
- Output voltage adjustable from 1.3V to 37V
- Internal short circuit protection
- Internal over temperature protection
- Safe-Area compensation for output transistor
- Available in TO220-3, TO-252 and TO-263
 Packages

APPLICATION

- PC Motherboard
- LCD Monitor
- Graphic Card
- DVD Player
- Network Interface Card/Switch
- Telecom Equipment
- Printer and other Peripheral Equipment

TYPICAL APPLICATION

^{*=}C_{IN} is required if regulator is located near power supply filter.


$$V_{OUT}=V_{REF} x (1+R2/R1)+I_{ADJ}xR2$$

Since I_{ADJ} is controlled to less than $100\mu A$, the error associated with this term is negligible in most applications.

^{**=}Co is needed for stability and it improves transient response.

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

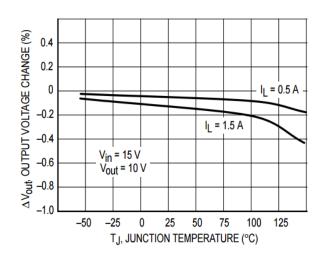
V _{IN} -V _{OUT} , Input - Output Voltage Difference	40V
P _D , Power Dissipation	Internal limited
T _{OPR} , Operating Temperature Range	0°C~125°C
Ts, Storage Temperature	-65°C~150°C
T _{LEAD} , Lead Temperature (soldering, 10 sec)	260°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

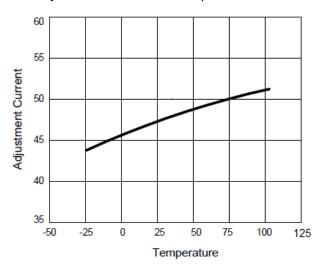
THERMAL DATA

Parameter		Symbol	Rating	Units	
Junction-to-Ambient	TO-252		112	°C/W	
	TO-220	θја	54		
	TO-263		64		
Junction-to-Case	TO-252		12	°C/W	
	TO-220	Өлс	5		
	TO-263		5		

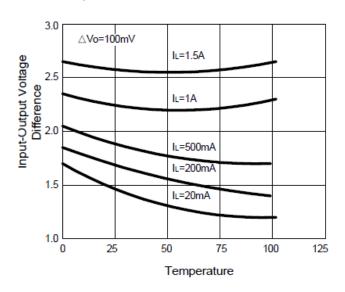
ELECTRICAL CHARACTERISTICS

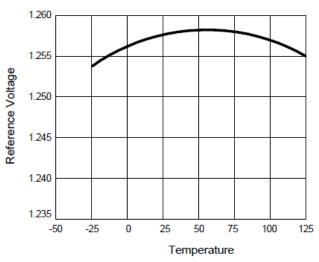

 V_I - V_O =5V, 0°C< T_J <125°C, I_O =500mA, I_{MAX} =1.5A, P_{MAX} =20W, unless otherwise specified

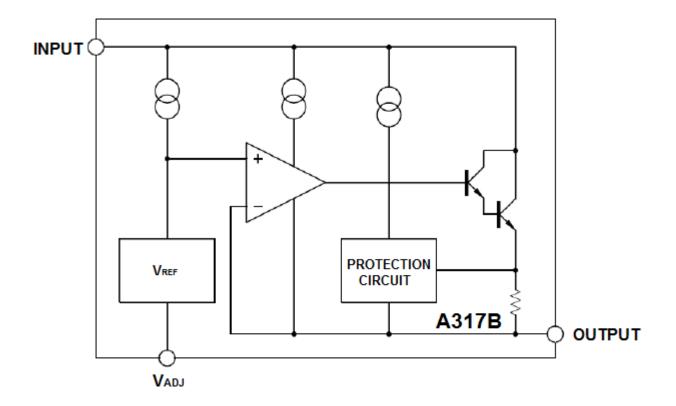
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Live Book Int	ΔVo	T _A =25°C, 3V≤V _I -V _O ≤40V			0.01	0.04	0/ 0./
Line Regulation		T _A =0~125°C, 3V≤V _I -V _O ≤40V			0.02	0.07	%/V
	ΔVo	T _A =25°C	Vo≤6V		18	25	mV
 		10mA≤I _O ≤I _{MAX}	Vo≤5V		0.4	0.5	%/Vo
Load Regulation		40 4 4	Vo≤5V		40	70	mV
		10mA≤I _O ≤I _{MAX}	Vo≤6V		8.0	1.5	%/Vo
Adjustable Pin Current	I _{ADJ}				46	100	μA
Adjustable Pin Current Change	ΔI _{ADJ}	2.5V≤V _I -V _O ≤40V, 10mA≤I _O ≤I _{MAX} , P _D ≤P _{MAX}			2.0	5.0	μΑ
Reference Voltage	V_{REF}	3V≤V _I -V _O ≤40V, 10mA≤I _O ≤I _{MAX} , P _D ≤P _{MAX}		1.20	1.25	1.30	V
Temperature Stability	STT				0.7		%/Vo
Minimum Load Current for Regulation	I _{L(MIN)}	V _I -V _O =40V			3.5	10	mA
	I _{O(MAX)}	V _I -V _O ≤15V, P _D ≤P _{MAX}		1.5	2.2		
Maximum output Current		V _I -V _O ≤15V, P _D ≤P _{MAX} , T _A =25°C		0.15	0.4		А
RMS Noise vs. % of V _{OUT}	eN	T _A =25°C, 10Hz≤f≤10kHz			0.003	0.01	%/V ₀
		Vo=10V, f=120Hz, C _{ADJ} =0			60		
Ripple Rejection	RR	V _O =10V, f=120Hz, C _{ADJ} =10μF		66	75		dB
Long-term Stability,	ST	T _A =25°C, 1000hr			0.3	1	%


NOTE: Testing with low duty pulse should be used to avoid heating effect

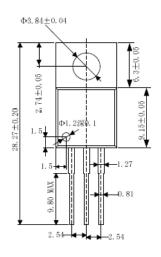
TYPICAL PERFORMANCE CHARACTERISTICS

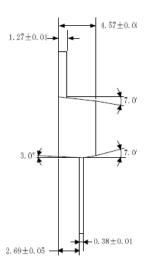

1. Load Regulation

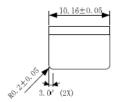

2. Adjustment Current vs. Temperature


Dropout Voltage vs. Input-Output Voltage Difference

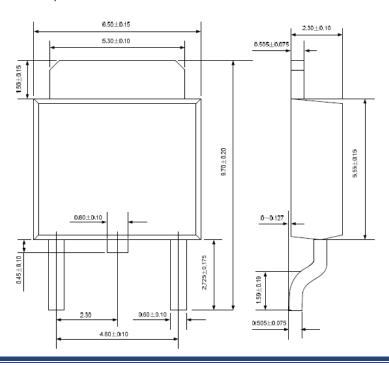
4. Reference Voltage vs. Temperature

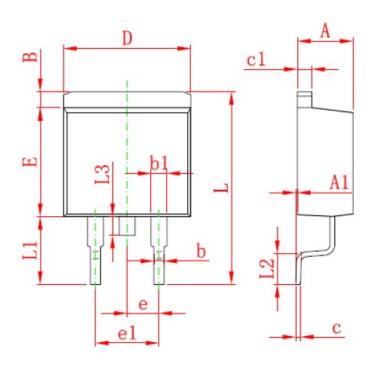


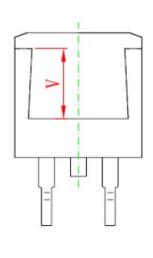

BLOCK DIAGRAM



PACKAGE INFORMATION


Dimension in TO220-3 (Unit: mm)





Dimension in TO-252 (Unit: mm)

Dimension in TO-263 (Unit: mm)

Cumbal	Millimeters		Inches		
Symbol	Min	Max	Min	Max	
Α	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
В	1.170	1.370	0.046	0.054	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.500	8.900	0.335	0.350	
е	2.540 TYP		0.100 TYP		
e1	4.980	5.180	0.196	0.204	
L	15.050	15.450	0.593	0.608	
L1	5.080	5.480	0.200	0.216	
L2	2.340	2.740	0.092	0.108	
L3	1.300	1.700	0.051	0.067	
V	5.600 REF		0.220 REF		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.